• Home
  • Fariba Ostovar
  • OpenAccess
    • List of Articles Fariba Ostovar

      • Open Access Article

        1 - Determining the Optimum Coagulant for Chemical Treatment of Fiber Wastewater from Pulp and Paper Mills
        هانیه میربلوکی shamim moghadami Fariba Ostovar
        Pulp and paper mills consider as a major wastewater producer industries in order to cellulosic pollution and also consuming high amount of water during the process.The wastewater treatment process is complicated because these kinds of effluents contain suspended & coll More
        Pulp and paper mills consider as a major wastewater producer industries in order to cellulosic pollution and also consuming high amount of water during the process.The wastewater treatment process is complicated because these kinds of effluents contain suspended & colloidal impurities and color & odor; so using chemical coagulants via the Jar test can be an appropriate alternative to remove the contaminants. In this research, different concentrations of Alum, PAC and FeCl3 coagulants were tested to reduce the contamination load of the effluent from three important major parts of fiber wastewater producers; that, according to the results FeCl3 was reported as the best chemical coagulants which removed 61%, 74/05 % and 58% of the COD from the three mentioned parts effluent. Therefore, chemical treatment by using of an appropriate coagulant with the optimum concentration can perform an important role in reducing the effluent contamination load. Manuscript profile
      • Open Access Article

        2 - Investigation of Using Ultrafiltration and Fenton Combined treatment method for pulp and paper wastewater Treatment
        niloofar Abedinzade alireza pendashteh Fariba Ostovar
        In this study, the treatability of pulp and paper wastewater has been studied using a combined method (ultrafiltration and fenton) in a laboratory scale. First, the effect of membrane filtration on the removal of turbidity and COD, as well as membrane flux and membrane More
        In this study, the treatability of pulp and paper wastewater has been studied using a combined method (ultrafiltration and fenton) in a laboratory scale. First, the effect of membrane filtration on the removal of turbidity and COD, as well as membrane flux and membrane fouling were investigated, and then the advanced oxidation method was used to supplement the treatment and increase the removal efficiency of the pollutants. At the end of the membrane filtration operation, the removal efficiency of turbidity was 99%. Based on the results, the average COD of the filtration process with 41.8% removal efficiency was 906 mg/ l. Under optimal pressure conditions bar-1, the amount of membrane flux in the first backwash was equal to 1/99 L.m-2.h-1 which this amount reached to 1/26 L.m-2.h-1after the fourth backwash. the Fenton process removed 862/5 mg /L COD from the pretreated wastewater by UF membrane with an optimal dose of 1.5 mM for Fe +2 and 6 mM for a hydrogen peroxide at an initial pH of 3 and at a 17minute reaction time .In these conditions, the removal efficiency of COD, BOD5 and color was 95%, 90.3% and 92.1% respectively, These results shows high efficiency of the advanced oxidation process to remove contaminants in pulp and paper wastewater Manuscript profile
      • Open Access Article

        3 - Investigation of the ability for removal of methylene blue cationic dye in aqueous samples using synthetic polymers
        Marzieh Hasanzadeh Fariba Ostovar
        In this research, the ability for removal of methylene blue cationic dye using Electro active polymers based on polypyrrole (PPy) and poly (3-methylthiophene) (P3MTh) in a batch system were studied. Sawdust (SD) was made from wood, after patching, as a holder for coatin More
        In this research, the ability for removal of methylene blue cationic dye using Electro active polymers based on polypyrrole (PPy) and poly (3-methylthiophene) (P3MTh) in a batch system were studied. Sawdust (SD) was made from wood, after patching, as a holder for coating polymers and Sodium Dodecyl Sulfate Anionic Surfactant (SDS) was used to modify the surface of the sawdust. The effects of some important parameters such as pH, initial concentration of dye and contact time were investigated. To evaluate the obtained data, adsorption isotherm curves (Langmuir and Freundlich) were used. The adsorption efficiency for methylene blue was maximized at alkaline pH. Adsorption capacity increased with increasing initial concentration and contact time. In all cases, the adsorption process complies with Langmuir isotherm and represents the homogeneous and single-layer process. Also, the adsorption capacity obtained in SD/PPy, SD /PPy / SDS and SD / P3MTh polymers were 59/52, 400 and 1000 mg/g, respectively. Based on the studies and the results obtained in this study, it was found that these polymer materials can effectively be used in waste dyes, such as textile industry, which they have the great environmental significance. Manuscript profile
      • Open Access Article

        4 - The Investigation of Ability to Degradation and Removal of Various Dyes Using Silver Colloidal Nanoparticles
        Mohadeseh Tavakoli Fariba Ostovar
        Colors are one of the most important pollutants of water, and only one entry into the water can significantly reduce the quality of water. In addition, due to the synthetic origin and the presence of complex molecules in the structure of colors, the purification process More
        Colors are one of the most important pollutants of water, and only one entry into the water can significantly reduce the quality of water. In addition, due to the synthetic origin and the presence of complex molecules in the structure of colors, the purification process is sometimes accompanied by some problems. Colloidal nanoparticles play an important role in technology, especially in the manufacture of glass and ceramics, and are used as a suitable method for cleaning pollutants in water and wastewater. In this study, a chemical regeneration method was used to synthesize colloidal silver nanoparticles. Then, to evaluate the efficiency of synthetic silver nanoparticles, several solutions of dye and pigments such as sulfur, azo, reactive, cationic and anionic dyes were prepared and synthetic material was used for degradation of different colors. Finally, the effect of this colloidal nanoparticle on each of them was studied and compared. The results showed that silver colloidal nanoparticles have the ability to degradation and removal of methyl orange and methyl red dyes from aqueous samples, and these nanoparticles can be used for treatment the water and wastewater containing these dyes. Manuscript profile
      • Open Access Article

        5 - Coagulant recovery from waterworks sludge by acid digestion method
        S Elaheh Mahdavian Ahagh Fariba Ostovar
        Coagulation is a process that increases the tendency of small particles in an aqueous suspension to attach to one another and to surfaces such as the media in a filter bed and is applied through mixing coagulants such as aluminum sulfate (alum), ferric chloride and poly More
        Coagulation is a process that increases the tendency of small particles in an aqueous suspension to attach to one another and to surfaces such as the media in a filter bed and is applied through mixing coagulants such as aluminum sulfate (alum), ferric chloride and polyaluminum chloride with raw water. Sludge containing coagulant is formed after coagulation and through sedimentation of natural turbidity. Presence of high amounts of coagulant in waterworks sludge, increases environmental risks and disposal costs. Coagulants in sludge have high economic value. Therefore, if these coagulants recover, not only sludge disposal risks but also expenses related to supply of fresh coagulant in water or wastewater treatment plant may decrease. In this paper, researches conducted by acid digestion method for coagulant recovery from waterworks sludge are investigated. Amounts of coagulant recovery, advantages and disadvantages and economic aspects of this method are studied. Results of the investigation showed that using sulfuric acid is the best option for conducting acid digestion process because it is cheap and available. Moreover, if the purpose of recovering process is to achieve a recovered coagulant with a similar quality to the commercial ones, acid digestion method will not satisfy related standards. Manuscript profile
      • Open Access Article

        6 - A review of widely used industrial dyes and their removal methods from water and wastewater
        Fariba Ostovar Marzieh Hasanzadeh
        In recent years, the expansion of industries has led to increase industrial wastewater production and environmental pollution. Dyes materials are one of the most important pollutants in industrial wastewater. Today, dyes are widely used in various industries such as tex More
        In recent years, the expansion of industries has led to increase industrial wastewater production and environmental pollution. Dyes materials are one of the most important pollutants in industrial wastewater. Today, dyes are widely used in various industries such as textile, paper, leather, printing, and cosmetics. Drainage of colored wastewater does not only affect the aesthetic aspect of the receiving water but also reduces the process of photosynthesis. Also, the colors and their intermediate products are toxic, carcinogenic and mutagenic for aquatic life. Most of these dyes cause skin allergies, dermatitis, and itching, and accelerate the incidence of cancer and mutation in humans. Therefore, industrial wastewaters containing dye need to be treated prior to discharge into the receiving environment. The purpose of this study was to provide a summary of the most important industrial dyes, the health and environmental effects of dyes as pollutants, and to describe the methods for their removal from water and wastewater. In this study, different dye removal methods such as biological, physical and surface adsorption methods were described and the best process for treatment of colored wastewater was introduced considering the economical cost. Manuscript profile
      • Open Access Article

        7 - A Review of Arsenic Removal Methods from Water Resources
        Marzieh Hasanzadeh Fariba Ostovar
        Many of the pollutants in water are known to be harmful for human health and toxic for environment. Among these pollutants, Arsenic is more important because millions of people are exposed to contaminated drinking water. The World Health Organization (WHO) has identifie More
        Many of the pollutants in water are known to be harmful for human health and toxic for environment. Among these pollutants, Arsenic is more important because millions of people are exposed to contaminated drinking water. The World Health Organization (WHO) has identified the permitted limit of below 0.01 mg/L (10 micrograms per liter) for arsenic in drinking water and the same amount for arsenic has been reported in Iran's 1053 standard. In this study, various techniques have been investigated for removing Arsenic and efficiency of different nanoparticles in treatment of Arsenic from drinking water. Common methods of removing Arsenic from water sources are including oxidation, coagulation and flocculation, reverse osmosis and ultrafiltration, ion exchange, phytoremediation and new technologies based on the use of nanoparticles. The findings showed that despite of the high arsenic removal percentage using different methods such as oxidation, ion exchange and floating with dissolved air, these methods are not economic and a lot of time is required to achieve optimal efficiency. Recently, the use of nanoparticles has become very popular, so that metal oxide nanoparticles such as magnetic iron, Zinc, Copper, Serum, and Aluminum can completely eliminate Arsenic soluble with a high concentration of 50 mg/L in water sources and after the adsorbent is saturated, it is possible to use the regeneration of adsorbents, repeatedly by adsorbing the pollutant into the adsorbent. As a result, the use of nanoparticles is better than chemical processes and is economic due to their high efficiency in a short time. Manuscript profile