بررسی منافع محیط زیستی و اقتصادی مدیریت تلفیقی آفات (IPM)
بهاره رفیعی
1
(
بخش تحقیقات گیاهپزشکی، مرکز تحقیقات کشاورزی و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترويج کشاورزی، رشت، ايران
)
فاطمه معززی
2
(
بخش تحقیقات اقتصادی، اجتماعی و ترویج کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران
)
کلید واژه: مدیریت تلفیقی آفات (IPM), آفتکشها, کاهش آلودگی, بهرهوری اقتصادی, محیطزیست,
چکیده مقاله :
در سالهای اخیر، اهمیت توسعه و اجرای برنامههای مدیریت تلفیقی آفات (IPM) به دلیل چالشهای محیط زیستی ناشی از مصرف آفتکشهای شیمیایی افزایش یافته است. IPM به عنوان یک رویکرد جامع و پایدار، با ترکیب روشهای زیستی، مکانیکی، زراعی و شیمیایی، سبب کاهش وابستگی به آفتكشهاي شیمیایی و حفظ تعادل بوم شناختی میشود. منافع اقتصادی و محیط زیستی مدیریت تلفیقی آفات قابل توجه است. از مهمترین مزایای این روش میتوان به کاهش هزینههای تولید، افزایش کیفیت و بازدهی محصولات، امنیت غذایی، کاهش آلودگی منابع طبیعی، حفظ تنوع زیستی و افزایش ایمنی گونههای غیرهدف اشاره کرد. این مزایا را میتوان به صورت ارزش اقتصادی بیان کرد و با محاسبه ارزش اقتصادی برنامههای IPM، گامهای مؤثری برای شناسایی منافع و کاربرد وسیعتر آنها برداشت. با وجود مزایای متعدد IPM، چالشهایی در مسیر اجرای این برنامهها وجود دارد. کمبود آگاهی کشاورزان، زیرساختهای ناکافی و تمایل به استفاده از روشهای سنتی از مهمترین موانع هستند. برای غلبه بر این چالشها، ارائه برنامههای آموزشی برای آگاهی از اهمیت IPM و سیاستهای حمایتی ضروری است. این بررسی با ارائه شواهد علمی و دادههای موردی، بر نقش و اهمیت مدیریت تلفیقی آفات، به عنوان ابزاری کارآمد برای کاهش پیامدهای منفی محیط زیستی مصرف آفتکشها و ارزیابی عوامل و مدلهای اقتصادی مؤثر بر منافع محیط زیستی در مسیر اجرای برنامههای IPM، تأکید دارد.
چکیده انگلیسی :
In recent years, the importance of developing and implementing Integrated Pest Management (IPM) programs has grown due to increasing environmental concerns associated with the use of chemical pesticides. As a comprehensive and sustainable approach, IPM integrates biological, mechanical, agronomic, and chemical methods to reduce reliance on chemical pesticides and maintain ecological balance. The environmental and economic benefits of IPM are substantial. Key advantages include reduced production costs, improved crop quality and yield, enhanced food security, decreased contamination of natural resources, biodiversity conservation, and greater safety for non-target species. These benefits can be translated into economic value, and assessing the economic impact of IPM programs can support broader adoption and policy planning. Despite its numerous benefits, the implementation of IPM still faces challenges, including farmers’ lack of awareness, inadequate infrastructure, and continued reliance on conventional practices. Addressing these issues requires comprehensive educational initiatives and supportive policy frameworks. This review highlights the critical role of IPM in mitigating the negative environmental impacts of pesticide use. It also examines the economic factors and models that influence the environmental outcomes of IPM implementation, drawing on scientific evidence and case studies.
Angon, P. B., Mondal, S., Jahan I., Datto, M., Antu, U. B., Ayshi, F. J., Islam, Md. S., Xiao X. (2023). Integrated pest management (IPM) in agriculture and its role in maintaining ecological balance and biodiversity. Advances in Agriculture., 5546373, 19 pp.
Berg, v. d. H, & Jiggins J (2007). Investing in farmers - the impacts of farmer field schools in relation to integrated pest management. World Dev. 35:663–686
Bellon, S., de Sainte, M. C., Lauri, P. E., Navarette, M., Nesme, T., Plénet, D., Pluvinage, J. & Habib, R. (2006). La production fruitière intégrée: le vert est-il dans le fruit? Le Courrier de l’Environnement del’INRA, Paris, 5–18.
Blanche, K. R., Ludwig, J. A., & Cunningham, S. A. (2006). Proximity to rainforest enhances pollination and fruit set in orchards. Journal of Applied Ecology, 43(6), 1182–1187.
Begg, G. S., Cook, S. M., Dye, R., Ferrante, M., Franck, P., Lavigne, C., ey al. (2017). A functional overview of conservation biological control. Crop Prot 97:145–158.
Bommarco, R., Kleijn, D., & Potts, S. G. (2013). Ecological intensification: Harnessing ecosystem services for food security. Trends in Ecology & Evolution, 28(4), 230–238.
Barzman, M., Bàrberi, P., Birch, A. N., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B., et al. (2015). Eight principles of integrated pest management. Agronomy for Sustainable Development, 35(4), 1199-1215.
Chakraborty, S., et al. (2023). Environmental benefits of IPM in rice farming. Environment International, 164, 107875.
Chatterjee, S., C. Gangopadhyay, P. Bandyopadhyay, M.K. Bhowmick, S.K. Roy, A. Majumder, M.K. Gathala, R.K. Tanwar, S.P. Singh, A. Birah, C. Chattopadhyay, (2021). Input-based assessment on integrated pest management for transplanted rice (Oryza sativa) in India, Crop Protection, 141:105444.
Constantine, K. L., Murphy, S. T., & Pratt, C. F. (2020). The interaction between pests, mixed-maize crop production and food security: a case study of smallholder farmers in Mwea West, Kenya. Cogent Food & Agriculture, 6(1).
Das, N., Gs, S., Teja, K. S. S., Hazarika, S., Madhuri, V., Rupali J. S., Devi, L. S., Biplove B. D. J. P., Aubertot, J. N., Flor, R.J. et al. (2024). Integrated pest management: good intentions, hard realities. A review. Agron. Sustain. Dev. 41, 38.
Dasgupta, S., Meisner, C., Wheeler, D. (2007). Is Environmentally Friendly Agriculture Less Profitable for Farmers? Evidence on Integrated Pest Management in Bangladesh. Review of Agricultural Economics, 29(1):103-118.
Depenbusch, L., Sequeros, T., Schreinemachers, P., Sharif, M., Mannamparambath, K., Uddin, N., & Hanson, P. (2023). Tomato pests and diseases in Bangladesh and India: farmers’ management and potential economic gains from insect resistant varieties and integrated pest management. International Journal of Pest Management, 1–15.
Desneux, N., Decourtye, A., Delpuech, J.-M., (2007). The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol., 52, 81–106.
Dubey, Vinod & Sahoo, Sanjay & Sujatha, B. & Das, Abhibandana. (2022). Adoption of IPM in Indian Agriculture.
Banerjee, Amitava. (2014). Integrated pest management in rice in india -A REVIEW. 133-144.
Delcour I, Spanoghe P, Uyttendaele M. (2015). Literature review: impact of climate change on pesticide use. Food Res. Int. 68:7–15.
Denholm Ian & Devine Gregor J., )2013(. Insecticide Resistance. Encyclopedia of biodiversity. 4: 28298-307.
Elaine, M. Liu, J., Huang, K. (2013). Risk preferences and pesticide use by cotton farmers in China. Journal of Development Economics, 103:202-215.
Ehler, L. E. (2006). Integrated pest management (IPM): Definition, historical development and implementation, and the other IPM. Pest Management Science 62(9):787-9.
Feder, G., Just, R. E., & Zilberman, D. (1985). Adoption of agricultural innovations in developing countries: A survey. Economic Development and Cultural Change, 33(2), 255-298.
Ferron, P. (1999). Protection intégrée des cultures0: évolution du concept et de son application. Cah Agr 8:389–396.
Garibaldi, L. A., Carvalheiro, L. G., Leonhardt, S. D., Aizen, M. A., Blaauw, B. R., Isaacs, R., ... & Klein, A. M. (2014). From research to action: Enhancing crop yield through wild pollinators. Frontiers in Ecology and the Environment, 12(8), 439-447.
Giri, L., Hussain, M., Angmo, J. C., Mustafa, G., Singh, B., Bahukhnadi, A., Pradhan, R., Kumar, R., Mukherjee, S., Bhatt, I. D., & Nautiyal, S. (2025). Enhancing tomato (Solanum lycopersicum) yield and nutrition quality through hydroponic cultivation with treated wastewater. Food chemistry, 463(Pt 1), 141079.
Gliessman, S. (2016). Transforming food systems with agroecology. Agroecology and sustainable food systems, 40(3), 187-189.
Hardaker, J. B., Lien, G., Anderson, J. R. & Huirne, R. B. (2015). Coping with risk in agriculture: Applied decision analysis. Walingford: CABI. 0851998313.
Hollingsworth, C. S., & Coli, W. M. (2001). IPM adoption in northeastern U.S.: An examination of the IPM continuum. American Journal of Alternative Agriculture, 16(4), 177–183.
Jepson, P. C., Murray, K., Bach, O., Bonilla, M. A., Neumeister, L. (2020). Selection of pesticides to reduce human and environmental health risks: a global guideline and minimum pesticides list. Lancet Plan Health 4:e56–e63.
Jones, R., & Pannell, D. J. (2009). The economics of integrated pest management for crops. Agricultural Systems, 31(3), 153-177.
Joshi, R. & Gaur, N. )2020(. Agro-ecological approach for insect pest management in organic crops. Journal of Entomology and Zoology Studies, 8(4): 1473-1477.
Khatri, N., Tyagi, S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 8 23–39.
Jørs, E., Aramayo, A., Huici, O., Konradsen, F., Gulis, G. (2017). Obstacles and opportunities for diffusion of integrated pest management strategies reported by Bolivian small-scale farmers and agronomists. Environ Health Insight. 11: 1178630217703390.
Laohaudomchok, W., Nankongnab, N., Siriruttanapruk, S., Klaimala, P., Lianchamroon, W., Ousap, P., Jatiket, M., Kajitvichyanukul, P., Kitana, N., Siriwong, W., Hemachudhah, T., Satayavivad, J., Robson, M., Jaacks, L., Barr, D. B., Kongtip, P., & Woskie, S. (2021). Pesticide use in Thailand: Current situation, health risks, and gaps in research and policy. Human and ecological risk assessment: HERA, 27(5), 1147–1169.
Leake, A. (2000). The development of integrated crop management in agricultural crops: comparisons with conventional methods. Pest Manag Sci, 56:950–953.
Lenteren, V. J. C. (2012). The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl, 57:1–20.
Liang, D., Lu, X., Zhuang, M. et al. (2021). China’s greenhouse gas emissions for cropping systems from 1978–2016. Sci Data 8, 171.
Li, Q., Si, R., Guo, S., Waqas, M. A., & Zhang, B. (2023). Externalities of Pesticides and Their Internalization in the Wheat–Maize Cropping System—A Case Study in China’s Northern Plains. Sustainability, 15(16), 12365.
Ma, W., & Zheng, H. (2022). Heterogeneous impacts of information technology adoption on pesticide and fertiliser expenditures: Evidence from wheat farmers in China. Australian Journal of Agricultural and Resource Economics, 66(1), 72-92.
Mahdavian, S. M., Askari, F., Kioumarsi, H., Naseri Harsini, R., Dehghanzadeh, H., & Saboori, B. (2024). Modeling the linkage between climate change, CH4 emissions, and land use with Iran’s livestock production: A food security perspective. Natural Resources Forum, 1–24.
Mathava, K. and Ligy, P. (2006). Adsorption and desorption characteristics of hydrophobic pesticide endosulfan in four Indian soils. Chemosphere, 62, 1064–1077.
Nguyen, T. D. (2018). Economic and environmental effects of Integrated Pest Management program: A case study of Hau Giang province (Mekong Delta). Journal of Vietnamese Environment, 9(2), 77-85.
Oehmke, J. F. (1996). Science under scarcity: Principles and practice for agricultural research evaluation and priority setting: J.M. Alston, G.W. Norton, and P.G. Pardey. Cornell University Press, Ithaca, NY, 1995, 513 pp., US$39.95, ISBN 0-8014-2937-4. Agricultural Economics. 15, 2, 151-153.
Parsa, S., Morse, S., Bonifacio, A., Chancellor, T. C., Condori, B., Crespo-Pérez, V., ... & Dangles, O. (2014). Obstacles to integrated pest management adoption in developing countries. Proceedings of the National Academy of Sciences, 111(10), 3889-3894.
Pannell, D. (1997). Sensitivity analysis of normative economic models: theoretical framework and practical strategies. Agricultural Economics, 16(2), 139-152.
Pecenka, J. R., Ingwell, L. L., Foster, R. E., Krupke, C. H., & Kaplan, I. (2021). IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation. Proceedings of the National Academy of Sciences of the United States of America, 118(44), e2108429118.
Perkins, J.H. (2009). Integrated Pest Management, Biofuels, and a New Green Revolution: A Case Study of the American Midwest. In: Peshin, R., Dhawan, A.K. (eds) Integrated Pest Management: Dissemination and Impact. Springer, Dordrecht. 581–607.
Pedigo, L. P., Hutchins, S. H. & Higley, L. (2003). Economic Injury Levels in Theory and Practice. Annual Review of Entomology. 31, 341-368.
Peshin, R., & Dhawan, A.K. (2009). Integrated Pest Management: Dissemination and Impact. 978-1-4020-8990-9.
Pérez-Méndez N, Andersson GKS, Requier F, Hipólito J, Aizen MA, et al. 2020. The economic cost of losing native pollinator species for orchard production. J. Appl. Ecol. 57, 599–608.
Pimentel, D. & Burgess, M. (2013). Environmental and Economic Benefits of Reducing Pesticide Use. Integrated Pest Management. 3. 127-139.
Pimentel, D., & Pimentel, M. (1992). Environmental and economic costs of pesticide use. BioScience, 42(10), 750–760.
Popp, J., Pető, K., & Nagy, J. (2013). Pesticide productivity and food security. A review. Agronomy for sustainable development, 33, 243-255.
Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345–353.
Pretty, J., & Bharucha, Z. P. (2018). Sustainable intensification of agriculture: greening the world's food economy. Routledge.
Pretty, J., & Bharucha, Z. P. (2015). Integrated Pest Management for Sustainable Intensification of Agriculture in Asia and Africa. Insects, 6(1), 152-182.
Pretty, J. N., Brett, C., Gee, D., Hine, R. E., Mason, C. F., Morison, J. I. L., ... & Dobbs, T. L. (2001). Policy challenges and priorities for internalizing the externalities of modern agriculture. Journal of Environmental Planning and Management, 44(2), 263-283.
Ratnadass, A. (2020). Crop Protection for Agricultural Intensification Systems in Sub-Saharan Africa. Sustain Agric Rev. 39:1–34.
Steffens, K., Larsbo, M., Moeys, J., Jarvis, N., Lewan, E. (2013). Predicting pesticide leaching under climate change: Importance of model structure and parameter uncertainty. Agri. Ecol. Environ. 172, 24–34.
Smith, R. F., Smith, G. L. (1949). Supervised control of insects. Calif Agr, 3:3–12.
Santi, S., Roderick M. Rejesus & Jose M. Yorobe Jr., (2015). "Economic impacts of integrated pest management (IPM) farmer field schools (FFS): evidence from onion farmers in the Philippines," Agricultural Economics, International Association of Agricultural Economists, 46(2), 149-162.
Steffens, K., Larsbo, M., Moeys, J., Jarvis, N., Lewan, E. (2013). Predicting pesticide leaching under climate change: Importance of model structure and parameter uncertainty. Agri. Ecol. Environ. 172 24–34.
Syafrudin, M., Kristanti, R.A., Yuniarto, A., Hadibarata, T., Rhee, J., Al-onazi, W.A., Algarni, T.S., Almarri, A.H., Al-Mohaimeed, A.M., (2021). Pesticides in Drinking Water. A Review. IJERPH 18 (2), 468
Sánchez-Bayo, F., & Wyckhuys, K. A. G. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 8–27.
Settle, W. H., Ariawan, H., Astuti, E. T., Cahyana, W., Hakim, A. L., Hindayana, D., & Lestari, A. S. (1996). Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology, 77(7), 1975-1988.
Sharma, S. (2023). Cultivating Sustainable Solutions: Integrated Pest Management (IPM) For Safer and Greener Agronomy. Corporate Sustainable Management Journal (CSM J). 1(2),103-108.
Sharon K Papiernik, Thomas W Sappington, Randall G Luttrell, Louis S Hesler, K Clint Allen, (2018). Overview: Risk Factors and Historic Levels of Pressure from Insect Pests of Seedling Corn, Cotton, Soybean, and Wheat in the United States, Journal of Integrated Pest Management, 9(1), 18 pp.
Tison, L., Beaumelle, L., Monceau, K., Thiery, D. (2023). Transfer and bioaccumulation of pesticides in terrestrial arthropods and food webs: State of knowledge and perspectives for research. Chemosphere, 357: 142036.
Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R et al. (2021). Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 18: 31112.
Wille, J. E. (1951). Biological Control of Certain Cotton Insects and the Application of New Organic Insecticides in Peru. J Econ Entomol. 44,13–18.