روشهای ارزیابی اثرات صنایع فولاد بر محیطزیست در چارچوب (DPSIR)
منصوره عباسی
1
(
دانشگاه تهران- دانشکده محیطزیست
)
سعید کریمی
2
(
عضو هیئت علمی، دانشکده محیط زیست، دانشکده فنی دانشگاه تهران، تهران، ایران
)
کلید واژه: ارزیابی اثرات, محیطزیست, صنعت فولاد, مدل DPSIR,
چکیده مقاله :
فولاد به دلیل خواص منحصر به فردی که دارد، یک ماده حیاتی در صنایع مدرن است. در دنیایی که به طور گسترده، نگرانیهای فزاینده افزایش مصرف منابع وجود دارد، لازم است از شیوههای مناسبی استفاده شود تا به پایداری محیطزیستی، رفاه اجتماعی و منافع اقتصادی بینجامد. یکی از این راهکارها، ارزیابی اثرات محیطزیست به روش چرخه حیات است که محاسبه تأثیرگذاری آن با استفاده از پایگاه عمومی دادهها، میتواند چالش برانگیز باشد. پژوهش حاضر، با روش مرور اسنادی و مطالعه کتابخانهای به تجزیه و تحلیل جامع ارزیابی اثرات صنعت فولاد در قالب کاربرد تلفیقی ارزیابی چرخه عمر-امرژی و جاپایکربن (LCA-Emergy-Carbon Footprint) پرداخت و به منظور تحلیل عوامل مؤثر بر وضعیت محیطزیستی صنعت مزبور با تکیه بر زنجیره علّی و معلولی، در چارچوب مدل (DPSIR) به ارائه پاسخهای مرتبط از جمله تدوین دستورالعمل ارزیابی اثرات صنایع بر محیطزیست تأکید نمود. سپس آسیبها و چالشهای این صنعت را در ابعاد اجتماعی، اقتصادی و محیطزیستی مورد آنالیز قرار داد و برای بهبود مستمر بهرهوری منابع، ارتقای کیفیت محیطزیست و کارایی عملیاتی، به بیان رویکردهای نوین پایداری در این صنعت پرداخت. این رویکردها شامل اقدامات اساسی بر محور انرژیهای پاک، فناوری صرفهجویی انرژی، سیستم عملیات هوشمند، مدیریت محیطزیست، استراتژی طراحی و اجرای پروژههای کمکربن است.
چکیده انگلیسی :
Steel, due to its unique properties, is a vital material in modern industries. In a world, where there are growing concerns about increasing resource consumption, it is essential to adopt appropriate strategies that contribute to environmental sustainability, social welfare, and economic benefits. One of these strategies is the Life Cycle Assessment (LCA) approach; however, calculating environmental impacts using public databases can be challenging. This study, conducted through documentary review and library research, provides a comprehensive analysis of the environmental impacts of the steel industry using an integrated application of Life Cycle Assessment, Emergy, and Carbon Footprint (LCA–Emergy–Carbon Footprint). To identify and analyze the factors affecting the environmental performance of the steel industry, the study employs the Driver–Pressure–State–Impact–Response (DPSIR) framework and emphasizes the development of guidelines for assessing industrial impacts on the environment. The research further analyzes the main damages and challenges of the steel industry across social, economic, and environmental dimensions. To promote continuous improvement in resource efficiency, environmental quality, and operational performance, it presents new sustainability approaches for this sector. These approaches include measures based on clean energy development, energy-saving technologies, intelligent operation systems, environmental management, and strategies for designing and implementing low-carbon projects.
Asada, R., Cardellini, G., Mair-Bauernfeind, C., Wenger, J., Haas, V., Holzer, D., & Stern, T. (2020). Effective bioeconomy? A MRIO-based socioeconomic and environmental impact assessment of generic sectoral innovations. Technological Forecasting and Social Change, 153, 119946.
Axelson, M., Oberthür, S., & Nilsson, L. J. (2021). Emission reduction strategies in the EU steel industry: Implications for business model innovation. Journal of Industrial Ecology, 25(2), 390-402.
Anbuselvan, N. D. S. N., & Sridharan, M. (2018). Heavy metal assessment in surface sediments off Coromandel Coast of India: Implication on marine pollution. Marine pollution bulletin, 131, 712-726.
Aydın, H., Tepe, Y., & Ustaoğlu, F. (2023). A holistic approach to the eco-geochemical risk assessment of trace elements in the estuarine sediments of the Southeastern Black Sea. Marine Pollution Bulletin, 189, 114732.
Badea, D. O., Trifu, A., & Darabont, D. C. (2024). A comparative study on the effectiveness of pollutants control measures adopted in the steel industry to reduce workplace and environmental exposure: a case study. Scientific Reports, 14(1), 9916.
Baki, R. (2022). An integrated multi-criteria structural equation model for green supplier selection. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(4), 1063-1076.
Black, J.T., Kohser, R.A., DeGarmo, E.P., 2008. DeGarmo’s Materials and Processes in Manufacturing, tenth ed. Wiley, Hoboken, NJ.
Bröring, S., Laibach, N., & Wustmans, M. (2020). Innovation types in the bioeconomy. Journal of Cleaner Production, 266, 121939.
Duan, Y., Li, N., Mu, H., & Gui, S. (2017). Research on CO2 emission reduction mechanism of China’s iron and steel industry under various emission reduction policies. Energies, 10(12), 2026.
Elliott, M., 2002, The role of the DPSIR approach and conceptual models in marine environmental management: anexample for offshore wind power. Marine Pollution Bulletin 44: iii–vii.
Elliott, M., Burdon, D., Hemingway, K., 2006, Marine Ecosystem Structure, Functioning, Health and Management and Potential Approaches to Marine Ecosystem Recovery: A Synthesis of Current Understanding. CCW Policy Research Report No. 06/5.
Elliott, M., 2011, Marine science and management means tackling exogenic unmanaged pressures and endogenic managed pressures – a numbered guide. Marine Pollution Bulletin 62, 651–655.
Eurofer, L. C. R. (2019). Pathways to a CO2-neutral European steel industry.
European Commission, 2020. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions. A new Circular Economy Action Plan for a cleaner and more competitive Europe. Brussels.
European Commission, 2014. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the Review of the List of Critical Raw Materials for the EU and the Implementation of the Raw Materials Initiative.
European Parliament, 2017. The Ecodesign Directive(2009/125/EC): European Implementation Assessment. Publications Office, LU.
Falcone, P. M., González García, S., Imbert, E., Lijó, L., Moreira, M. T., Tani, A., ... & Morone, P. (2019). Transitioning towards the bio‐economy: Assessing the social dimension through a stakeholder lens. Corporate Social Responsibility and Environmental Management, 26(5), 1135-1153.
Fan, Z., & Friedmann, S. J. (2021). Low-carbon production of iron and steel: Technology options, economic assessment, and policy. Joule, 5(4), 829-862.
Fente, T. E., & Tsegaw, A. A. (2024). Environmental impact assessment of steel reinforcing bar manufacturing process from scrap materials using life cycle assessment method: a case study on the Ethiopian metal industries. Discover Applied Sciences, 6(2), 53.
Foxon, T. J. (2011). A coevolutionary framework for analysing a transition to a sustainable low carbon economy. Ecological economics, 70(12), 2258-2267.
Furåker, B., (2010). On The Social Consequences of Unemployment: European Parliament’s Special Committee on the Financial, Economic and Social Crisis (IP/A/ CRIS/NT/2009-05, PE 429.996. European Parliament, Policy Department Economic and Scientific Policies, Brussels.
Gillott, C., Mihkelson, W., Lanau, M., Cheshire, D., & Densley Tingley, D. (2023). Developing regenerate: a circular economy engagement tool for the assessment of new and existing buildings. Journal of Industrial Ecology, 27(2), 423-435.
Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P., & Reck, B. K. (2015). Criticality of metals and metalloids. Proceedings of the National Academy of Sciences, 112(14), 4257-4262.
Gregory A. J, Atkins J. P, Burdon. D, Elliot. M, 2005, A problem structuring method for ecosystem-based management: The DPSIR modeling process. European Journal of Operational Research. 227, 558-569
Gutiérrez, I. G., Pina, C., Tobajas, R., & Elduque, D. (2024). Incorporating composition into life cycle assessment of steel grades. Journal of Cleaner Production, 472, 143538.
Hadler, M., Brenner-Fliesser, M., & Kaltenegger, I. (2023). The social impact of the steel industry in Belgium, China, and the United States: a social lifecycle assessment (s-LCA)-based assessment of the replacement of fossil coal with waste wood. Journal of Sustainable Metallurgy, 9(4), 1499-1511.
He, K., & Wang, L. (2017). A review of energy use and energy-efficient technologies for the iron and steel industry. Renewable and Sustainable Energy Reviews, 70, 1022-1039.
Hernandez, A. G., Paoli, L., & Cullen, J. M. (2018). How resource-efficient is the global steel industry? Resources, Conservation and Recycling, 133, 132-145.
Hu, R., & Zhang, C. (2017). Discussion on energy conservation strategies for steel industry: Based on a Chinese firm. Journal of Cleaner Production, 166, 66-80.
Hua, N. P., Kelly, J. C., Lewis, G. M., & Keoleian, G. A. (2022). Regional analysis of aluminum and steel flows into the American automotive industry. Journal of Industrial Ecology, 26(4), 1318-1332.
Kanyilmaz, A., Birhane, M., Fishwick, R., & del Castillo, C. (2023). Reuse of steel in the construction industry: Challenges and opportunities. International Journal of Steel Structures, 23(5), 1399-1416.
Kappenthuler, S., & Seeger, S. (2021). Holistic evaluation of the suitability of metal alloys for sustainable marine construction from a technical, economic and availability perspective. Ocean Engineering, 219, 108378.
Kildahl, H., Wang, L., Tong, L., & Ding, Y. (2023). Cost effective decarbonisation of blast furnace–basic oxygen furnace steel production through thermochemical sector coupling. Journal of Cleaner Production, 389, 135963.
Kim, S. W., Kong, J. H., Lee, S. W., & Lee, S. (2022). Recent advances of artificial intelligence in manufacturing industrial sectors: A review. International Journal of Precision Engineering and Manufacturing, 1-19.
Kleinschmit, D., Lindstad, B. H., Thorsen, B. J., Toppinen, A., Roos, A., & Baardsen, S. (2014). Shades of green: a social scientific view on bioeconomy in the forest sector. Scandinavian journal of forest research, 29(4), 402-410.
León, M. F. G., Blengini, G. A., Matos, C. T., & Dewulf, J. (2022). Long-term retrospective analysis of the societal metabolism of cobalt in the European Union. Journal of Cleaner Production, 338, 130437.
Liu, F., Wang, X., Dai, S., Zhou, J., Liu, D., Hu, Q., ... & Yan, H. (2023). Spatial variations, health risk assessment, and source apportionment of soil heavy metals in the middle Yellow River Basin of northern China. Journal of Geochemical Exploration, 252, 107275.
Li, F., Chu, M., Tang, J., Liu, Z., Wang, J., & Li, S. (2021). Life-cycle assessment of the coal gasification-shaft furnace-electric furnace steel production process. Journal of Cleaner Production, 287, 125075.
Loorbach, D., & Wijsman, K. (2013). Business transition management: exploring a new role for business in sustainability transitions. Journal of cleaner production, 45, 20-28.
Marimuthu, R., Sankaranarayanan, B., Ali, S. M., de Sousa Jabbour, A. B. L., & Karuppiah, K. (2021). Assessment of key socio-economic and environmental challenges in the mining industry: Implications for resource policies in emerging economies. Sustainable Production and Consumption, 27, 814-830.
Mateus, M. and F. J. Campuzano. 2008. The DPSIR framework applied to the integrated management of coastal areas, perspectives on integrated coastal zone management in South America, DOI: 10.13140/2.1.3841.6960. 29- 42.
Milan, Grohol, Veeh, Constanze, European Commission. (2023). European Commission, Study on the Critical Raw Materials for the EU 2023 – Final Report. Luxembourg.
Mitrašinović, A., & Tomić, M. (2022). Functional and environmental advantage of cleaning Ti5B1 master alloy. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(3), 783-793.
Murray, G. (Ed.). (1997). Handbook of materials selection for engineering applications. CRC Press.
Nezamoleslami, R., & Hosseinian, S. M. (2020). An improved water footprint model of steel production concerning virtual water of personnel: The case of Iran. Journal of environmental management, 260, 110065.
Nechifor, V., Calzadilla, A., Bleischwitz, R., Winning, M., Tian, X., & Usubiaga, A. (2020). Steel in a circular economy: Global implications of a green shift in China. World Development, 127, 104775.
Niu, S., Xia, Y., Yang, C., & Liu, C. (2023). Impacts of the steel industry on sediment pollution by heavy metals in urban water system. Environmental Pollution, 335, 122364.
Oladazimi, A., Mansour, S., & Hosseinijou, S. A. (2020). Comparative life cycle assessment of steel and concrete construction frames: A case study of two residential buildings in Iran. Buildings, 10(3), 54.
Olofsson, E. (2019). Regional effects of a green steel industry–fuel substitution and feedstock competition. Scandinavian Journal of Forest Research, 34(1), 39-52.
Pan, H., Zhuang, M., Geng, Y., Wu, F., & Dong, H. (2019). Emergy-based ecological footprint analysis for a mega-city: The dynamic changes of Shanghai. Journal of Cleaner Production, 210, 552-562.
Panasiuk, D., Daigo, I., Hoshino, T., Hayashi, H., Yamasue, E., Tran, D. H., ... & Shatokha, V. (2022). International comparison of impurities mixing and accumulation in steel scrap. Journal of Industrial Ecology, 26(3), 1040-1050.
Pollard, J., Osmani, M., Cole, C., Grubnic, S., & Colwill, J. (2021). A circular economy business model innovation process for the electrical and electronic equipment sector. Journal of Cleaner Production, 305, 127211.
Poponi, D., Bryant, T., Burnard, K., Cazzola, P., Dulac, J., Pales, A. F., ... & West, K. (2016). Energy technology perspectives 2016: towards sustainable urban energy systems. International Energy Agency.
Rojas-Cardenas, J. C., Hasanbeigi, A., Sheinbaum-Pardo, C., & Price, L. (2017). Energy efficiency in the Mexican iron and steel industry from an international perspective. Journal of cleaner production, 158, 335-348.
Sala, S., Amadei, A. M., Beylot, A., & Ardente, F. (2021). The evolution of life cycle assessment in European policies over three decades. The International Journal of Life Cycle Assessment, 26, 2295-2314.
Sanz-Hernández, A., Esteban, E., & Garrido, P. (2019). Transition to a bioeconomy: Perspectives from social sciences. Journal of cleaner production, 224, 107-119.
Sen, B., Mia, M., Krolczyk, G. M., Mandal, U. K., & Mondal, S. P. (2021). Eco-friendly cutting fluids in minimum quantity lubrication assisted machining: a review on the perception of sustainable manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 249-280.
Shi, G., Zhao, H., & Gao, Y. (2022). Development of triple grades hybrid high-performance steel structure (TGHSS): Concept and experiments. Engineering Structures, 266, 114654.
Shu-dong, Z., F. Mueller, B. Burkhard, C. Xing-jin and H. Ying. 2013. Assessing agricultural sustainable developme based on the DPSIR approach: case study in Jiangsu, China Journal of Integrative Agriculture 12(7): 1292-1299.
Siebert, A., O'Keeffe, S., Bezama, A., Zeug, W., & Thrän, D. (2018). How not to compare apples and oranges: Generate context-specific performance reference points for a social life cycle assessment model. Journal of Cleaner Production, 198, 587-600.
Srinivasan, R. S., Braham, W. W., Campbell, D. E., & Curcija, C. D. (2012). Re (De) fining net zero energy: renewable emergy balance in environmental building design. Building and Environment, 47, 300-315.
Strategy, U. B. (2018). A sustainable bioeconomy for Europe: strengthening the connection between economy, society and the environment. European Commission. –2018.
Strezov, V., Evans, A., & Evans, T. (2013). Defining sustainability indicators of iron and steel production. Journal of cleaner production, 51, 66-70.
Susur, E., & Karakaya, E. (2021). A reflexive perspective for sustainability assumptions in transition studies. Environmental Innovation and Societal Transitions, 39, 34-54.
Tian, X., Geng, Y., & Ulgiati, S. (2017). An emergy and decomposition assessment of China-Japan trade: Driving forces and environmental imbalance. Journal of Cleaner Production, 141, 359-369.
Toppinen, A., D'amato, D., & Stern, T. (2020). Forest-based circular bioeconomy: matching sustainability challenges and novel business opportunities? Forest Policy and Economics, 110, 102041.
Turner, R. K., Adger, W. N., and I. Lorenzoni. 1998a. Towards integrated modelling and analysis in coastal zones: Principles and practices. LOICZ Reports & Studies, No. 11, LOICZ IPO. Texel, The Netherlands, 122 pp.
Van Dijk, H. A. J., Cobden, P. D., Lundqvist, M., Cormos, C. C., Watson, M. J., Manzolini, G., ... & Sundelin, B. (2017). Cost effective CO2 reduction in the Iron & Steel Industry by means of the SEWGS technology: STEPWISE project. Energy Procedia, 114, 6256-6265.
Wang, C., Mellin, P., Lövgren, J., Nilsson, L., Yang, W., Salman, H., ... & Larsson, M. (2015). Biomass as blast furnace injectant–Considering availability, pretreatment and deployment in the Swedish steel industry. Energy Conversion and Management, 102, 217-226.
Wang, P., Kara, S., & Hauschild, M. Z. (2018). Role of manufacturing towards achieving circular economy: the steel case. CIRP Annals, 67(1), 21-24.
World Steel Association, 2022. World steel in figures 2022. worldsteel.org. URL.
Yu, X., Geng, Y., Dong, H., Fujita, T., & Liu, Z. (2016). Emergy-based sustainability assessment on natural resource utilization in 30 Chinese provinces. Journal of Cleaner Production, 133, 18-27.
Zimek, M., Asada, R., Baumgartner, R. J., Brenner-Fliesser, M., Kaltenegger, I., & Hadler, M. (2022). Sustainability trade-offs in the steel industry–A MRIO-based social impact assessment of bio-economy innovations in a belgian steel mill. Cleaner Production Letters, 3, 100011.
Zhang, X., Shen, J., Wang, Y., Qi, Y., Liao, W., Shui, W., ... & Yu, X. (2017). An environmental sustainability assessment of China’s cement industry based on emergy. Ecological Indicators, 72, 452-458.
Zhang, J., & Ma, L. (2020). Environmental sustainability assessment of a new sewage treatment plant in China based on infrastructure construction and operation phases emergy analysis. Water, 12(2), 484.
Zhang, J., Ma, L., & Yan, Y. (2020). A dynamic comparison sustainability study of standard wastewater treatment system in the straw pulp papermaking process and printing & dyeing papermaking process based on the hybrid neural network and emergy framework. Water, 12(6), 1781.
Zhang, J., & Asutosh, A. T. (2025). LCA-emergy and carbon footprint analysis in a steel industry reporting system: A case study of a Chinese steel company. Science of The Total Environment, 958, 177901.
Zhao, R., Su, H., Chen, X., & Yu, Y. (2016). Commercially available materials selection in sustainable design: an integrated multi-attribute decision making approach. Sustainability, 8(1), 79.
Zhao, H., Zhai, X., Guo, L., Liu, K., Huang, D., Yang, Y., ... & Wang, K. (2019). Assessing the efficiency and sustainability of wheat production systems in different climate zones in China using emergy analysis. Journal of Cleaner Production, 235, 724-732.