A Review of Arsenic Removal Methods from Water Resources
Subject Areas : Soil and water pollution with heavy metalsMarzieh Hasanzadeh 1 * , Fariba Ostovar 2
1 -
2 - Faculty member of Environmental Research Institute of ACECR
Keywords:
Abstract :
Many of the pollutants in water are known to be harmful for human health and toxic for environment. Among these pollutants, Arsenic is more important because millions of people are exposed to contaminated drinking water. The World Health Organization (WHO) has identified the permitted limit of below 0.01 mg/L (10 micrograms per liter) for arsenic in drinking water and the same amount for arsenic has been reported in Iran's 1053 standard. In this study, various techniques have been investigated for removing Arsenic and efficiency of different nanoparticles in treatment of Arsenic from drinking water. Common methods of removing Arsenic from water sources are including oxidation, coagulation and flocculation, reverse osmosis and ultrafiltration, ion exchange, phytoremediation and new technologies based on the use of nanoparticles. The findings showed that despite of the high arsenic removal percentage using different methods such as oxidation, ion exchange and floating with dissolved air, these methods are not economic and a lot of time is required to achieve optimal efficiency. Recently, the use of nanoparticles has become very popular, so that metal oxide nanoparticles such as magnetic iron, Zinc, Copper, Serum, and Aluminum can completely eliminate Arsenic soluble with a high concentration of 50 mg/L in water sources and after the adsorbent is saturated, it is possible to use the regeneration of adsorbents, repeatedly by adsorbing the pollutant into the adsorbent. As a result, the use of nanoparticles is better than chemical processes and is economic due to their high efficiency in a short time.
افلاکی، ف.، شیخ قمی، ه. (1387). بررسی کارایی فیلتر سونو جهت حذف آرسنیک از آب آشامیدنی در مناطق با محدودیت دسترسی به آب سالم. یازدهمین همایش ملی بهداشت محیط، دانشگاه علوم پزشکی زاهدان.
بهاروند، س.، میربیک سبزواری، ک.، فرهپور، م.م (1386). تأثیر آرسنیک بر محیط¬زیست و سلامت انسان. اولین همایش زمین¬شناسی زیست¬محیطی و پزشکی دانشگاه شهید بهشتی.
بابایی، ی.، علوی مقدم، م.ر.، قاسم زاده، ف.، ارباب زوار، م.ح. (1385). بررسی امکان حذف آرسنیک از آب با استفاده از تکنیک گیاه پالایی. نهمین همایش ملی بهداشت محیط، دانشگاه علوم پزشکی اصفهان.
سلامی اصل، س.، داودیان، س. (1394). اثرات زیست محیطی فلز آرسنیک و روش¬های حذف آن از آب و خاک. اولین کنگره علمی پژوهشی توسعه و ترویج علوم کشاورزی، منابع طبیعی و محیط¬زیست ایران، انجمن توسعه و ترویج علوم و فنون بنیادین.
علیایی، ا.، بانژاد، ح.، رحماني، ع.ر.، افخمي، ع.، خداويسي، ج. (1391). امکان¬سنجي استفاده از نانوذرات پراکسيد¬کلسيم در حذف آرسنيک (III) از آب¬هاي آلوده در کشاورزي و تاثير آن بر پارامترهاي کيفي آبياري. مجله سلامت و محيط¬زیست، فصلنامه علمي پژوهشي انجمن علمي بهداشت محيط ايران، 5(3). 319 تا 330.
عسگري، ع.، محوی، ا.، واعظی، ف.، قصری، آ. (1387). گرانول هيدروكسيد آهن جاذبي براي حذف آرسنات و آرسنيت از آب آشاميدني. مجله علمی دانشگاه علوم پزشکی کردستان، 13(2)، 76-86.
كرد مصطفي پور، ف.، بذر¬افشان، ا.، کمانی، ح. (1389). بررسي قابليت حذف آرسنيك از آب با استفاده از فرآيند انعقاد و شناورسازي با هواي محلول. فصلنامه سلامت و محیط¬زیست، 3(3)، ۳۰۹-۳۱۸.
مولر اند مولر، (1372). ترجمه سعید فردوسی، مدیریت پسماندهای شیمیایی، انتشارات شهرداری تهران.
مظفريان، ك.، مدايني، س.س.، خشنودي، م.ع. (1385). ارزيابي عملكرد فرآيند اسمز معكوس در حذف آرسنيك از آب. فصلنامه آب و فاضلاب، 60، 22-28.
مسافري، م.، مصداقينيا، ع. (1384). حذف آرسنيك از آب آشاميدني با استفاده از آلوميناي فعال اصلاح شده. فصلنامه آب و فاضلاب، دانشكده بهداشت و تغذيه، دانشگاه علوم پزشكي 16(3)، 2-14.
نيك مرام، ر. (1387). ارزيابي عملكرد پرمنگنات پتاسيم در حذف آرسنيك از آب شرب با استفاده از متدولوژي شش سيگما. دومین همایش ملی آب و فاضلاب با رویکرد بهره-برداری.
Ansari, R., Hassanzadeh, M., & Ostovar, F. (2017). Arsenic Removal from Water Samples Using CeO2/Fe2O3 Nanocomposite. International Journal of Nanoscience and Nanotechnology, 13(4), 335-345.
Awual, M. R., Shenashen, M. A., Yaita, T., Shiwaku, H., & Jyo, A. (2012). Efficient arsenic (V) removal from water by ligand exchange fibrous adsorbent. Water research, 46(17), 5541-5550.
Biswas, B. K., Inoue, J. I., Inoue, K., Ghimire, K. N., Harada, H., Ohto, K., & Kawakita, H. (2008). Adsorptive removal of As (V) and As (III) from water by a Zr (IV)-loaded orange waste gel. Journal of Hazardous Materials, 154(1-3), 1066-1074.
Cassidy, D. P., & Irvine, R. L. (1999). Use of calcium peroxide to provide oxygen for contaminant biodegradation in a saturated soil. Journal of hazardous materials, 69(1), 25-39.
Choong, T. S., Chuah, T. G., Robiah, Y., Koay, F. G., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination, 217(1-3), 139-166.
Dixit, S., & Hering, J. G. (2006). Sorption of Fe (II) and As (III) on goethite in single-and dual-sorbate systems. Chemical geology, 228(1-3), 6-15.
Ghurye, G., & Clifford, D. A. (2001). Laboratory study on the oxidation of arsenic III to arsenic V. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
Guo, H., Stüben, D., & Berner, Z. (2007). Adsorption of arsenic (III) and arsenic (V) from groundwater using natural siderite as the adsorbent. Journal of colloid and interface science, 315(1), 47-53..
Goswami, A., Raul, P. K., & Purkait, M. K. (2012). Arsenic adsorption using copper (II) oxide nanoparticles. Chemical Engineering Research and Design, 90(9), 1387-1396.
Hasanzadeh, M., Ansari, R., & Ostovar, F. (2016). Synthesis and application of CeO2/sawdust nanocomposite for removal of As (III) ions from aqueous solutions using a fixed bed column system. Global NEST J, 19(1), 7-16.
Han, D. S., Abdel-Wahab, A., & Batchelor, B. (2010). Surface complexation modeling of arsenic (III) and arsenic (V) adsorption onto nanoporous titania adsorbents (NTAs). Journal of colloid and interface science, 348(2), 591-599.
Jain, C. K., & Singh, R. D. (2012). Technological options for the removal of arsenic with special reference to South East Asia. Journal of environmental management, 107, 1-18.
Li, Z., Deng, S., Yu, G., Huang, J., & Lim, V. C. (2010). As (V) and As (III) removal from water by a Ce–Ti oxide adsorbent: behavior and mechanism. Chemical Engineering Journal, 161(1-2), 106-113.
Mohan, D., & Pittman Jr, C. U. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of hazardous materials, 142(1-2), 1-53.
Martinson, C. A., & Reddy, K. J. (2009). Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. Journal of Colloid and Interface Science, 336(2), 406-411.
Meharg, A. A. (2005). Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications. Plant and Soil, 274(1-2), 163-174.
Northup, A., & Cassidy, D. (2008). Calcium peroxide (CaO2) for use in modified Fenton chemistry. Journal of Hazardous Materials, 152(3), 1164-1170.
Nicomel, N. R., Leus, K., Folens, K., Van Der Voort, P., & Du Laing, G. (2016). Technologies for arsenic removal from water: current status and future perspectives. International journal of environmental research and public health, 13(1), 62.
Nieto-Delgado, C., & Rangel-Mendez, J. R. (2012). Anchorage of iron hydro (oxide) nanoparticles onto activated carbon to remove As (V) from water. Water research, 46(9), 2973-2982.
Obare, S. O., & Meyer, G. J. (2004). Nanostructured materials for environmental remediation of organic contaminants in water. Journal of Environmental Science and Health, Part A, 39(10), 2549-2582.
Oremland, R. S., & Stolz, J. F. (2003). The ecology of arsenic. Science, 300(5621), 939-944.
Oliveira, L. C., Petkowicz, D. I., Smaniotto, A., & Pergher, S. B. (2004). Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water research, 38(17), 3699-3704.
Pettine, M., & Millero, F. J. (2000). Effect of metals on the oxidation of As (III) with H2O2. Marine chemistry, 70(1-3), 223-234.
Ramos, M. A., Yan, W., Li, X. Q., Koel, B. E., & Zhang, W. X. (2009). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core− shell structure. The Journal of Physical Chemistry C, 113(33), 14591-14594.
Romero, A., Santos, A., Vicente, F., Rodriguez, S., & Lafuente, A. L. (2009). In situ oxidation remediation technologies: Kinetic of hydrogen peroxide decomposition on soil organic matter. Journal of Hazardous Materials, 170(2-3), 627-632.
Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied geochemistry, 17(5), 517-568.
Xu, W., Wang, J., Wang, L., Sheng, G., Liu, J., Yu, H., & Huang, X. J. (2013). Enhanced arsenic removal from water by hierarchically porous CeO2–ZrO2 nanospheres: role of surface-and structure-dependent properties. Journal of hazardous materials, 260, 498-507.
Zhang, S., Niu, H., Cai, Y., Zhao, X., & Shi, Y. (2010). Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chemical engineering journal, 158(3), 599-607.
Zade, P. D., & Dharmadhikari, D. M. (2007). Removal of arsenic as arsenite from groundwater/wastewater as stable metal ferrite. Journal of Environmental Science and Health, Part A, 42(8), 1073-1079.