کاربرد جاذب زیستی جلبک Champia kotschyana Harvey برای حذف کادمیوم: مکانیسمها و عوامل موثر
محورهای موضوعی : آلودگی خاک و آب با فلزات سنگینمریم منتی 1 , پروانه تیشه زن 2 * , عبدالرحیم هوشمند 3 , مجید بغدادی 4
1 - دانشجوی دکتری، گروه آبیاری و زهکشی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران
2 - استادیار، گروه مهندسی محیط زیست، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران
3 - استاد، گروه آبیاری و زهکشی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران
4 - دانشیار، گروه آب و فاضلاب، دانشکده محیط زیست، دانشگاه تهران، تهران، ایران
کلید واژه: کادمیوم, جلبک, جذب سطحی, ایزوترم, سینتیک,
چکیده مقاله :
یکی از راههای جبران کمبود آب به خصوص در بخش کشاورزی، استفاده از آبهای قابل بازیافت از جمله زه آبهای کشاورزی، فاضلابهای خانگی و صنعتی است. از طرفی حذف آلایندههای موجود در این گونه آبها از اهمیت ویژه ای برخوردار است. به دلیل هزینه بالا و راندمان کم سایر روشهای حذف آلاینده، روش جذب زیستی با هزینه کم، راندمان خوبی برای حذف آلایندهها از جمله کادمیوم را دارد. در این تحقیق جذب کادمیوم از محلولهای آبی با استفاده از جلبک Champia kotschyana Harvey مورد مطالعه قرار گرفت. اثر متغیرهای موثر مانند غلظت یونهای کادمیوم (5-5/0 میلی گرم در لیتر)، مقدار جاذب (7-1گرم در لیتر)، pH محلول (8-3) و زمان تماس (10-90 دقیقه) با روش سطح پاسخ مدل شد. طراحی باکس بنکن برای دادههای تجربی استفاده شد و بهترین سطح متغیرهای مستقل یعنی غلظت اولیه یون کادمیوم، pH، زمان تماس و مقدار جاذب انتخاب شدند. در شرایط مناسب (4=pH، مقدار جاذب= 5/1 گرم در لیتر، زمان تماس= 53/36 دقیقه، غلظت اولیه کادمیوم=3/3 میلی گرم در لیتر) ظرفیت جذب و درصد حذف کادمیوم به ترتیب، 3/1میلی گرم بر گرم و 14/80 به دست آمد. مطالعات سینتیک و ایزوترم نشان داد که مدل سینتیک شبه مرتبه دوم و ایزوترم لانگمویر به خوبی با دادههای جذب کادمیوم مطابقت دارند. بر طبق نتایج میتوان از بیومس جلبک Champia K. Harvey برای جذب کادمیوم از محلولهای آبی استفاده کرد.
One way to compensate for water shortages, especially in the agricultural sector, is to use recyclable water, including agricultural water, domestic and industrial wastewater. On the other hand, removing pollutants in these waters is particularly important. Due to the high cost and low efficiency of other pollutant removal methods, biological adsorption methods with low cost have good efficiency for removing pollutants, including cadmium. In this study, cadmium absorption in aqueous solutions was studied using Champia Kotschyana Harvey. Effect of effective variables such as concentration of cadmium ions (0.5-5 mg/L), absorbent value (7-1 gr/L), solution pH (3-8) and contact time (90-90 min) with model response level method became. The design of the Box- Behken was used for experimental data and the best level of independent variables, namely the initial concentration of cadmium ion, pH, contact time and adsorbent value, were selected. Under suitable conditions (pH=4, adsorbent value = 1.5 g/L, contact time = 36.53 min, cadmium initial concentration = 3.3 mg/L) adsorption capacity and cadmium removal percentage, respectively 3/1 mg/ g and 80/14 obtained. Kinetic and isotherm studies showed that the second-order Kinetic model and the isotherm Langmuir well corresponded to cadmium absorption data. According to the results, the Champia K. Harvey alga biomass can be used to adsorb cadmium from aqueous solutions.
اسدسنگابی، ف.، سنگی، م، ر.، باقری، ب. (1394). مطالعه پارامترهاي ترموديناميكي جذب يونهاي فلزي سرب، مس و كادميوم توسط جاذبهاي گياهي. نشریه علمی پژوهشی امیرکبیر- مهندسی عمران و محیط زیست، دوره47، شماره 3، صفحه های9 تا 16.
Ahmad, A. A., Hameed, B. H., & Aziz, N. (2007). Adsorption of direct dye on palm ash: Kinetic and equilibrium modeling. Journal of hazardous materials, 141(1), 70-76.
Ahemad, M., & Kibret, M. (2013). Recent trends in microbial biosorption of heavy metals: a review. Biochemistry and Molecular Biology, 1(1), 19-26.
Al-Homaidan, A. A., Alabdullatif, J. A., Al-Hazzani, A. A., Al-Ghanayem, A. A., & Alabbad, A. F. (2015). Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi Journal of Biological Sciences, 22(6), 795-800.
Aslan, N. E. V. Z. A. T., & Cebeci, Y. A. K. U. P. (2007). Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals. Fuel, 86(1-2), 90-97.
Bazrafshan, E., Zarei, A. A., & Mostafapour, F. K. (2016). Biosorption of cadmium from aqueous solutions by Trichoderma fungus: kinetic, thermodynamic, and equilibrium study. Desalination and Water Treatment, 57(31), 14598-14608. doi.org/10.1080/19443994.2015.1065764
Bhateria, R., & Dhaka, R. (2019). Optimization and statistical modelling of cadmium biosorption process in aqueous medium by Aspergillus niger using response surface methodology and principal component analysis. Ecological Engineering, 135, 127-138.
Bordoloi, N., Goswami, R., Kumar, M., & Kataki, R. (2017). Biosorption of Co (II) from aqueous solution using algal biochar: Kinetics and isotherm studies. Bioresource technology, 244, 1465-1469.
Bulgariu, D., & Bulgariu, L. (2012). Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresource technology, 103(1), 489-493.
Çelekli, A., & Bozkurt, H. (2011). Bio-sorption of cadmium and nickel ions using Spirulina platensis: Kinetic and equilibrium studies. Desalination, 275(1-3), 141-147.
Chugh, M., Kumar, L., Shah, M. P., & Bharadvaja, N. (2022). Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus, 100129.
Dasilva, L. J., de Rezende Pinto, F., do Amaral, L. A., & Garcia-Cruz, C. H. (2014). Biosorption of cadmium (II) and lead (II) from aqueous solution using exopolysaccharide and biomass produced by Colletotrichum sp. Desalination and Water Treatment, 52(40-42), 7878-7886.
Dirbaz, M., & Roosta, A. (2018). Adsorption, kinetic and thermodynamic studies for the biosorption of cadmium onto microalgae Parachlorella sp. Journal of Environmental Chemical Engineering, 6(2), 2302-2309. doi.org/10.1016/j.jece.2018.03.039
Egirani, D. E., Poyi, N. R., & Shehata, N. (2020). Preparation and characterization of powdered and granular activated carbon from Palmae biomass for cadmium removal. International Journal of Environmental Science and Technology, 17(4), 2443-2454.
Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C., Zhou, M., ... & Wang, X. (2008). Biosorption of cadmium (II), zinc (II) and lead (II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. Journal of hazardous materials, 160(2-3), 655-661.
Farooq, U., Kozinski, J. A., Khan, M. A., & Athar, M. (2010). Biosorption of heavy metal ions using wheat based biosorbents–a review of the recent literature. Bioresource technology, 101(14), 5043-5053.
Ferreira, L. S., Rodrigues, M. S., De Carvalho, J. C. M., Lodi, A., Finocchio, E., Perego, P., & Converti, A. (2011). Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chemical Engineering Journal, 173(2), 326-333.
Fraile, A., Penche, S., Gonzalez, F., Blázquez, M. L., Munoz, J. A., & Ballester, A. (2005). Biosorption of copper, zinc, cadmium and nickel by Chlorella vulgaris. Chemistry and Ecology, 21(1), 61-75.
Gunasundari, E., & Senthil Kumar, P. (2017). Adsorption isotherm, kinetics and thermodynamic analysis of Cu (II) ions onto the dried algal biomass (Spirulina platensis). Journal of Industrial and Engineering Chemistry, 56, 129-144.
Hameed, B. H., Mahmoud, D. K., & Ahmad, A. L. (2008). Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. Journal of hazardous materials, 158(1), 65-72.
Kajeiou, M., Alem, A., Mezghich, S., Ahfir, N. D., Mignot, M., Devouge-Boyer, C., & Pantet, A. (2020). Competitive and non-competitive zinc, copper and lead biosorption from aqueous solutions onto flax fibers. Chemosphere, 260, 127505.
Guo, X., & Wang, J. (2019). Comparison of linearization methods for modeling the Langmuir adsorption isotherm. Journal of Molecular Liquids, 296, 111850.
Lee, Y. C., & Chang, S. P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource technology, 102(9), 5297-5304.
Lin, Z., Li, J., Luan, Y., & Dai, W. (2020). Application of algae for heavy metal adsorption: A 20-year meta-analysis. Ecotoxicology and Environmental Safety, 190, 110089.
Meitei, M. D., & Prasad, M. N. V. (2013). Lead (II) and cadmium (II) biosorption on Spirodela polyrhiza (L.) Schleiden biomass. Journal of Environmental Chemical Engineering, 1(3), 200-207. Moreira, V. R., Lebron, Y. A. R., Freire, S. J., Santos, L. V. S., Palladino, F., & Jacob, R. S. (2019). Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: Optimization, equilibrium and kinetics studies. Microchemical Journal, 145, 119-129.
Parmar, P., Shukla, A., Goswami, D., Patel, B., & Saraf, M. (2020). Optimization of cadmium and lead biosorption onto marine Vibrio alginolyticus PBR1 employing a Box-Behnken design. Chemical Engineering Journal Advances, 4, 100043.
Pavasant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S., & Marhaba, T. F. (2006). Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresource technology, 97(18), 2321-2329.
Peng, S. H., Wang, R., Yang, L. Z., He, L., He, X., & Liu, X. (2018). Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Ecotoxicology and Environmental Safety, 165, 61-69.
Pradhan, D., Sukla, L. B., Mishra, B. B., & Devi, N. (2019). Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. Journal of Cleaner Production, 209, 617-629.
Polat, S., & Sayan, P. (2019). Application of response surface methodology with a Box–Behnken design for struvite precipitation. Advanced Powder Technology, 30(10), 2396-2407.
Qiu, P., Cui, M., Kang, K., Park, B., Son, Y., Khim, E., ... & Khim, J. (2014). Application of Box-Behnken design with response surface methodology for modeling and optimizing ultrasonic oxidation of arsenite with H2O2. Open Chemistry, 12(2), 164-172.
Salama, E. S., Roh, H. S., Dev, S., Khan, M. A., Abou-Shanab, R. A., Chang, S. W., & Jeon, B. H. (2019). Algae as a green technology for heavy metals removal from various wastewater. World Journal of Microbiology and Biotechnology, 35, 1-19. Sarı, A., & Tuzen, M. (2008). Biosorption of cadmium (II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. Journal of hazardous materials, 157(2-3), 448-454. doi.org/10.1016/j.jhazmat.2008.01.008.
Saurav, K., & Kannabiran, K. (2011). Biosorption of Cd (II) and Pb (II) ions by aqueous solutions of novel alkalophillic Streptomyces VITSVK5 spp. biomass. Journal of Ocean University of China, 10, 61-66.
Singh, A., Nigam, P. S., & Murphy, J. D. (2011). Renewable fuels from algae: an answer to debatable land based fuels. Bioresource technology, 102(1), 10-16.
Solisio, C., Lodi, A., Soletto, D., & Converti, A. (2008). Cadmium biosorption on Spirulina platensis biomass. Bioresource technology, 99(13), 5933-5937.
Sulaymon, A. H., Mohammed, A. A., & Al-Musawi, T. J. (2013). Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environmental Science and Pollution Research, 20, 3011-3023.
Suguna, M., & Kumar, N. S. (2013). Equilibrium, kinetic and thermodynamic studies on biosorption of lead (II) and cadmium (II) from aqueous solution by polypores biomass.
Tamilselvan, N., Saurav, K., & Kannabiran, K. (2011). Biosorption of selected toxic heavy metals using algal species Acanthopora spicefera. Pharmacologyonline, 1, 518-528.
Teimouri, A., Eslamian, S., & Shabankare, A. (2016). Removal of heavy metals from aqueous solution by red alga Gracilaria corticata as a new biosorbent. Trends in Life Science, 5(1), 236-243. [In Persian]
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology: volume 3: environmental toxicology, 133-164.
Yaghmaeian, K., & Jaafari, J. (2018). Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) algae cells using response surface methodology (RSM). Journal of chemosphere, DOI: 10.1016/j.chemosphere.2018.10.205. [In Persian]
Ye, G., Ma, L., Li, L., Liu, J., Yuan, S., & Huang, G. (2017). Application of Box–Behnken design and response surface methodology for modeling and optimization of batch flotation of coal. International Journal of Coal Preparation and Utilization.
Verma, A., Kumar, S., & Kumar, S. (2017). Statistical modeling, equilibrium and kinetic studies of cadmium ions biosorption from aqueous solution using S. filipendula. Journal of environmental chemical engineering, 5(3), 2290-2304.