مطالعۀ کارایی روشهای مختلف تجزیۀ زیستی میکروبی در حذف آلایندههای هیدروکربنی نفت خام
محورهای موضوعی : مهندسی شیمی (آلودگیهای محیط زیست)فرهود نوائی 1 , عباس هاشمیزاده 2 *
1 - دانشگاه حکیم سبزواری
2 - دانشگاه حکیم سبزواری
کلید واژه: تخریب میکروبی, آلایندههای هیدروکربنی نفتی, تجزیۀ بیولوژیکی, پالایش زیستی,
چکیده مقاله :
آلایندههای هیدروکربنهای نفتی، از لحاظ تجزیه و مقابله جزء ترکیبهای سخت بوده و به عنوان آلایندههای آلی پایدار و مهم طبقه بندی میشوند. این آلایندهها اثرات نامطلوبی بر سلامت انسان و محیط پیرامونش دارند و مقابله با آلودگی محیط زیست ناشی از آنها مسئلۀ مهمی برای جهان و جوامع بشری است. هرچند پاکسازی این آلایندهها از محیط زیست یک مشکل اساسی است، اما تجزیۀ بیولوژیکی که از فعالیّت بیولوژیکی طبیعی و تجزیۀ میکروبی استفاده میکند، یک روش سازگار با محیط زیست و اقتصادی برای کنترل این نوع آلودگیها است و در پاکسازی محیطهای آلوده با هیدروکربنهای نفتی به یک روش اصلی تبدیل شده است. پژوهش حاضر یک بررسی جامع، بههنگام و کارآمد دربارۀ تصفیۀ زیستی آلایندههای هیدروکربنی نفت خام با در نظر گرفتن دگرگونی و تغییرات هیدروکربنها توسط میکروارگانیسمها با تمرکز ویژه بر بینشهای جدید به وجود آمده در چند سال اخیر را ارائه میدهد. همچنین متابولیسم هیدروکربنها در میکروارگانیسمها با مرور تحقیقات ارائه شده در چند سال اخیر تشریح شده است. نتایج مطالعه حاضر به خوبی نشان میدهد آلایندههای هیدروکربنهای نفتی با استفاده از برخی میکروارگانیسمها مانند اولئوفیلیک، تا حد قابل قبولی زیستتجزیهپذیر بوده و حذف آنها با این روش مقرون به صرفه و اقتصادی است، همچنین تجزیۀ بیولوژیکی میکروبی آلایندههای هیدروکربن نفتی از فعالیّتهای کاتالیزوری آنزیمی میکروارگانیسمها استفاده میکند و میزان تخریب آلایندهها را تا چندین برابر روشهای سنتی افزایش دهد.
Petroleum hydrocarbon pollutants are one of the hardest compounds in terms of decomposition and control and classified as stable and important organic pollutants that have adverse effects on human health and the environment and combating environmental pollution caused by them is an important issue for the world and human societies. Although the removal of these pollutants from the environment is a major problem, biodegradation (which uses natural microbial biodegradation activity) is an ecofriendly and economical approach to control these types of contaminants and has become a pivotal method of cleaning up environments contaminated with petroleum hydrocarbons. The present study provides a comprehensive, uptodate and efficient review of the bioremediation of petroleum hydrocarbon pollutants, taking into account the hydrocarbon alterations in microorganisms with a particular focus on the new insights gained in recent years. Also, the metabolism of hydrocarbons in microorganisms has been described by reviewing research presented in recent years. The results of studies show well that petroleum hydrocarbon pollutants are biodegradable using some microorganisms such as oleophilic and their removal by this method is cost-effective and economical. Microbial biodegradation of petroleum hydrocarbon contaminants uses the enzymatic catalytic activities of microorganisms to increase the degradation of contaminants several times more than traditional methods
استوار، فریبا؛ حسن زاده، مرضیه (1399). مروری بر رنگینه های صنعتی پرکاربرد و روشهای حذف آنها از آب و فاضلاب، پژوهش و فناوری محیط زیست، 7(5)، 29-37.
تن زاده، جینا؛ شارقیفر، مائده؛ پناهنده، محمد (1395). استفاده از میکروارگانیسمها در پاکسازی زیستی فلزات سنگین موجود در خاک، پژوهش و فناوری محیط زیست، 1(1)، 1-6.
توکلی، محدثه (1399). ارزیابی جاذبهای طبیعی در تصفیه آب و فاضلاب، پژوهش و فناوری محیط زیست، 7(5)، 39-54.
جلیل زاده، هامون؛ پارسا، مهران؛ گلریز ارم ساداتی، محمدرضا (1396). مروری بر آلودگی های نفتی در دریای خزر، پژوهش و فناوری محیط زیست، 3(2)، 33-39.
Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The role of microorganisms in bioremediation A review. Open Journal of Environmental Biology, 2(1), 038-046.
Abbasian, F., Lockington, R., Mallavarapu, M., & Naidu, R. (2015). A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Applied biochemistry and biotechnology, 176(3), 670-699. https://doi.org/10.1007/s12010-015-1603-5
Adeleye, A., Nkereuwem, M., Omokhudu, G., Amoo, A., Shiaka, G., & Yerima, M. (2018). Effect of microorganisms in the bioremediation of spent engine oil and petroleum related environmental pollution. Journal of Applied Sciences and Environmental Management, 22(2), 157–167-157–167. https://doi.org/10.4314/jasem.v22i2.1
Agbaji, J. E., Nwaichi, E. O., & Abu, G. O. (2021). Attenuation of petroleum hydrocarbon fractions using rhizobacterial isolates possessing alkB, C23O, and nahR genes for degradation of n-alkane and aromatics. Journal of Environmental Science and Health, Part A, 1-16. https://doi.org/10.1080/10934529.2021.1913013
Al-Hawash, A. B., Dragh, M. A., Li, S., Alhujaily, A., Abbood, H. A., Zhang, X., & Ma, F. (2018). Principles of microbial degradation of petroleum hydrocarbons in the environment. The Egyptian Journal of Aquatic Research, 44(2), 71-76. https://doi.org/10.1016/j.ejar.2018.06.001
Alegbeleye, O. O., Opeolu, B. O., & Jackson, V. A. (2017). Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environmental management, 60(4), 758-783. https://doi.org/10.1007/s00267-017-0896-2
Amodu, O. S., Ojumu, T. V., & Ntwampe, S. K. O. (2013). Bioavailability of high molecular weight polycyclic aromatic hydrocarbons using renewable resources. Environmental Biotechnology-New Approaches and Prospective Applications, 171. https://dx.doi.org/10.5772/54727
Beškoski, V. P., Gojgić-Cvijović, G., Milić, J., Ilić, M., Miletić, S., Šolević, T., & Vrvić, M. M. (2011). Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)–A field experiment. Chemosphere, 83(1), 34-40. https://doi.org/10.1016/j.chemosphere.2011.01.020
Bhattacharya, M., Guchhait, S., Biswas, D., & Singh, R. (2019). Evaluation of a microbial consortium for crude oil spill bioremediation and its potential uses in enhanced oil recovery. Biocatalysis and agricultural biotechnology, 18, 101034. https://doi.org/10.1016/j.bcab.2019.101034
Brzeszcz, J., & Kaszycki, P. (2018). Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation, 29(4), 359-407. https://doi.org/10.1007/s10532-018-9837-x
Callaghan, A. V. (2013). Metabolomic investigations of anaerobic hydrocarbon-impacted environments. Current Opinion in biotechnology, 24(3), 506-515. https://doi.org/10.1016/j.copbio.2012.08.012
Câmara, J., Sousa, M., Neto, E. B., & Oliveira, M. (2019). Application of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa in microbial-enhanced oil recovery (MEOR). Journal of Petroleum Exploration and Production Technology, 9(3), 2333-2341. https://doi.org/10.1007/s13202-019-0633-x
Cameotra, S. S., & Makkar, R. S. (2010). Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure and Applied Chemistry, 82(1), 97-116. https://doi.org/10.1351/PAC-CON-09-02-10
Chandra, S., Sharma, R., Singh, K., & Sharma, A. (2013). Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Annals of microbiology, 63(2), 417-431. https://doi.org/10.1007/s13213-012-0543-3
Cheng, X., Hou, D., Mao, R., & Xu, C. (2018). Severe biodegradation of polycyclic aromatic hydrocarbons in reservoired crude oils from the Miaoxi Depression, Bohai Bay Basin. Fuel, 211, 859-867. https://doi.org/10.1016/j.fuel.2017.09.040
Cui, J., Chen, H., Sun, M., & Wen, J. (2020). Comparison of bacterial community structure and function under different petroleum hydrocarbon degradation conditions. Bioprocess and biosystems engineering, 43(2), 303-313. https://doi.org/10.1007/s00449-019-02227-1
Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology research international, 2011. https://doi:10.4061/2011/941810
Felix, A. K. N., Martins, J. J., Almeida, J. G. L., Giro, M. E. A., Cavalcante, K. F., Melo, V. M. M., . . . de Santiago Aguiar, R. S. (2019). Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil. Colloids and Surfaces B: Biointerfaces, 175, 256-263. https://doi.org/10.1016/j.colsurfb.2018.11.062
Fuentes, S., Méndez, V., Aguila, P., & Seeger, M. (2014). Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Applied microbiology and biotechnology, 98(11), 4781-4794. https://doi.org/10.1007/s00253-014-5684-9
Ghosal, D., Ghosh, S., Dutta, T. K., & Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Frontiers in microbiology, 7, 1369. https://doi.org/10.3389/fmicb.2016.01369
Hall, J., Matos, S., & Bachor, V. (2019). From green technology development to green innovation: inducing regulatory adoption of pathogen detection technology for sustainable forestry. Small Business Economics, 52(4), 877-889. https://doi.org/10.1007/s11187-017-9940-0
Hassanshahian, M., Amirinejad, N., & Behzadi, M. A. (2020). Crude oil pollution and biodegradation at the Persian Gulf: A comprehensive and review study. Journal of Environmental Health Science and Engineering, 18(2), 1415-1435. https://doi.org/10.1007/s40201-020-00557-x
Hussain, I., Puschenreiter, M., Gerhard, S., Schöftner, P., Yousaf, S., Wang, A., . . . Reichenauer, T. G. (2018). Rhizoremediation of petroleum hydrocarbon-contaminated soils: improvement opportunities and field applications. Environmental and Experimental Botany, 147, 202-219. https://doi.org/10.1016/j.envexpbot.2017.12.016
Kamal, M. S., Razzak, S. A., & Hossain, M. M. (2016). Catalytic oxidation of volatile organic compounds (VOCs)–A review. Atmospheric Environment, 140, 117-134. https://doi.org/10.1016/j.atmosenv.2016.05.031
Karlapudi, A. P., Venkateswarulu, T., Tammineedi, J., Kanumuri, L., Ravuru, B. K., ramu Dirisala, V., & Kodali, V. P. (2018). Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum, 4(3), 241-249. https://doi.org/10.1016/j.petlm.2018.03.007
Kertesz, M. A., Kawasaki, A., & Stolz, A. (2019). Aerobic hydrocarbon-degrading alphaproteobacteria: Sphingomonadales. Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes, 105-124. https://doi.org/10.1007/978-3-030-14796-9_9
Li, X., Li, H., & Qu, C. (2019). A review of the mechanism of microbial degradation of petroleum pollution. Paper presented at the IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/484/1/012060
Liu, X., Li, Z., Zhang, C., Tan, X., Yang, X., Wan, C., & Lee, D. J. (2020). Enhancement of anaerobic degradation of petroleum hydrocarbons by electron intermediate: Performance and mechanism. Bioresource technology, 295, 122305. https://doi.org/10.1016/j.biortech.2019.122305
Meckenstock, R. U., Boll, M., Mouttaki, H., Koelschbach, J. S., Tarouco, P. C., Weyrauch, P., . . . Himmelberg, A. M. (2016). Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. Journal of molecular microbiology and biotechnology, 26(1-3), 92-118. https://doi.org/10.1159/000441358
Meckenstock, R. U., & Mouttaki, H. (2011). Anaerobic degradation of non-substituted aromatic hydrocarbons. Current Opinion in biotechnology, 22(3), 406-414. https://doi.org/10.1016/j.copbio.2011.02.009
Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2011). Bioremediation approaches for organic pollutants: a critical perspective. Environment international, 37(8), 1362-1375. https://doi.org/10.1016/j.envint.2011.06.003
Mohammadi, L., Rahdar, A., Bazrafshan, E., Dahmardeh, H., Susan, M., Hasan, A. B., & Kyzas, G. Z. (2020). Petroleum hydrocarbon removal from wastewaters: A review. Processes, 8(4), 447. https://doi.org/10.3390/pr8040447
Mohammadkazemi, F., Azin, M., & Ashori, A. (2015). Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate polymers, 117, 518-523. https://doi.org/10.1016/j.carbpol.2014.10.008
Niu, J., Liu, Q., Lv, J., & Peng, B. (2020). Review on microbial enhanced oil recovery: Mechanisms, modeling and field trials. Journal of Petroleum Science and Engineering, 192, 107350. https://doi.org/10.1016/j.petrol.2020.107350
Nzila, A. (2018). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives. Environmental Pollution, 239, 788-802. https://doi.org/10.1016/j.envpol.2018.04.074
Obayori, O. S., & Salam, L. B. (2010). Degradation of polycyclic aromatic hydrocarbons: role of plasmids. Scientific Research and Essays, 5(25), 4093-4106. https://doi.org/10.5897/SRE.9000022
Ogbonna, D. N. (2018). Application of biological methods in the remediation of oil polluted environment in Nigeria. Journal of Advances in Biology & Biotechnology, 1-10. https://doi.org/10.9734/JABB/2018/41036
Olanrewaju, B. T., & Olubusoye, O. E. (2020). Reduction of Petroleum Consumption. https://doi.org/10.1007/978-3-319-71057-0_26-1
Ossai, I. C., Ahmed, A., Hassan, A., & Hamid, F. S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation, 17, 100526. https://doi.org/10.1016/j.eti.2019.100526
Park, S., Hong, J., Choi, S., Kim, H., Park, W., Han, S., . . . Ahn, Y. (2014). Detection of microorganisms using terahertz metamaterials. Scientific reports, 4(1), 1-7. https://doi.org/10.1038/srep04988
Pinheiro Pires, A. P., Arauzo, J., Fonts, I., Domine, M. E., Fernández Arroyo, A., Garcia-Perez, M. E., . . . Garcia-Perez, M. (2019). Challenges and opportunities for bio-oil refining: A review. Energy & Fuels, 33(6), 4683-4720. https://doi.org/10.1021/acs.energyfuels.9b00039
Pinto, A., Lopes, M., Dordio, A., & Castanheiro, J. (2021). Microbe and Plant‐Assisted Remediation of Organic Xenobiotics. Handbook of Assisted and Amendment: Enhanced Sustainable Remediation Technology, 437-475. https://doi.org/10.1002/9781119670391.ch22
Robson, W. J., Sutton, P. A., McCormack, P., Chilcott, N. P., & Rowland, S. J. (2017). Class type separation of the polar and apolar components of petroleum. Analytical chemistry, 89(5), 2919-2927. https://doi.org/10.1021/acs.analchem.6b04202
Ron, E. Z., & Rosenberg, E. (2014). Enhanced bioremediation of oil spills in the sea. Current Opinion in biotechnology, 27, 191-194. https://doi.org/10.1016/j.copbio.2014.02.004
Sachsenhofer, R., Bechtel, A., Gratzer, R., Enukidze, O., Janiashvili, A., Nachtmann, W., . . . Yukler, M. (2021). Petroleum systems in the Rioni and Kura Basins of Georgia. Journal of Petroleum Geology, 44(3), 287-316. https://doi.org/10.1111/jpg.12794
Safdel, M., Anbaz, M. A., Daryasafar, A., & Jamialahmadi, M. (2017). Microbial enhanced oil recovery, a critical review on worldwide implemented field trials in different countries. Renewable and Sustainable Energy Reviews, 74, 159-172. https://doi.org/10.1016/j.rser.2017.02.045
Sarsaiya, S., Awasthi, S. K., Jain, A., Mishra, S., Jia, Q., Shu, F., . . . Awasthi, M. K. (2019). Recent Developments in the Treatment of Petroleum Hydrocarbon and Oily Sludge from the Petroleum Industry. Biological Processing of Solid Waste, 277. https://doi.org/10.1201/b22333
Sharma, B., & Shukla, P. (2020). Futuristic avenues of metabolic engineering techniques in bioremediation. Biotechnology and Applied Biochemistry. https://doi.org/10.1002/bab.2080
Shen, T., Pi, Y., Bao, M., Xu, N., Li, Y., & Lu, J. (2015). Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia. Environmental Science: Processes & Impacts, 17(12), 2022-2033. https://doi.org/10.1039/C5EM00318K
Shen, Y., Li, J., He, F., Zhu, J., Han, Q., Zhan, X., & Xing, B. (2019). Phenanthrene-triggered tricarboxylic acid cycle response in wheat leaf. Science of the Total Environment, 665, 107-112. https://doi.org/10.1016/j.scitotenv.2019.02.119
Souza, E. C., Vessoni-Penna, T. C., & de Souza Oliveira, R. P. (2014). Biosurfactant-enhanced hydrocarbon bioremediation: An overview. International Biodeterioration & Biodegradation, 89, 88-94. https://doi.org/10.1016/j.ibiod.2014.01.007
Tao, W., Lin, J., Wang, W., Huang, H., & Li, S. (2020). Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifier-producing Aeribacillus pallidus strain SL-1. Ecotoxicology and environmental safety, 189, 109994. https://doi.org/10.1016/j.ecoenv.2019.109994
Tommasi, I. C. (2019). Carboxylation of hydroxyaromatic compounds with HCO3− by enzyme catalysis: recent advances open the perspective for valorization of lignin-derived aromatics. Catalysts, 9(1), 37. https://doi.org/10.3390/catal9010037
Tong, K., Zhang, Y., Liu, G., Ye, Z., & Chu, P. K. (2013). Treatment of heavy oil wastewater by a conventional activated sludge process coupled with an immobilized biological filter. International Biodeterioration & Biodegradation, 84, 65-71. https://doi.org/10.1016/j.ibiod.2013.06.002
Truskewycz, A., Gundry, T. D., Khudur, L. S., Kolobaric, A., Taha, M., Aburto-Medina, A., . . . Shahsavari, E. (2019). Petroleum hydrocarbon contamination in terrestrial ecosystems—fate and microbial responses. Molecules, 24(18), 3400. https://doi.org/10.3390/molecules24183400
Ukhurebor, K. E., Athar, H., Adetunji, C. O., Aigbe, U. O., Onyancha, R. B., & Abifarin, O. (2021). Environmental implications of petroleum spillages in the Niger Delta region of Nigeria: A review. Journal of Environmental Management, 293, 112872. https://doi.org/10.1016/j.jenvman.2021.112872
Unimke, A., Mmuoegbulam, O., & Anika, O. (2018). Microbial degradation of petroleum hydrocarbons: realities, challenges and prospects. Biotechnology Journal International, 1-10. https://doi.org/10.9734/BJI/2018/43957
Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource technology, 223, 277-286. https://doi.org/10.1016/j.biortech.2016.10.037
Varjani, S. J., & Upasani, V. N. (2017). A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration & Biodegradation, 120, 71-83. https://doi.org/10.1016/j.ibiod.2017.02.006
Waikhom, D., Ngasotter, S., Soniya Devi, L., Devi, S., & Singh, A. S. (2020). Role of Microbes in Petroleum Hydrocarbon Degradation in the Aquatic Environment: A Review. Int. J. Curr. Microbiol. Appl. Sci, 9, 2990-2903. https://doi.org/10.20546/ijcmas.2020.905.342
Wang, D., Lin, J., Lin, J., Wang, W., & Li, S. (2019). Biodegradation of petroleum hydrocarbons by Bacillus subtilis BL-27, a strain with weak hydrophobicity. Molecules, 24(17), 3021. https://doi.org/10.3390/molecules24173021
Wartell, B., Boufadel, M., & Rodriguez-Freire, L. (2021). An effort to understand and improve the anaerobic biodegradation of petroleum hydrocarbons: A literature review. International Biodeterioration & Biodegradation, 157, 105156. https://doi.org/10.1016/j.ibiod.2020.105156
Wilkes, H., Buckel, W., Golding, B. T., & Rabus, R. (2016). Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria. Journal of molecular microbiology and biotechnology, 26(1-3), 138-151. https://doi.org/10.1159/000442160
Xu, D., Zhang, K., Li, B.-G., Mbadinga, S. M., Zhou, L., Liu, J.-F., . . . Mu, B.-Z. (2019). Simulation of in situ oil reservoir conditions in a laboratory bioreactor testing for methanogenic conversion of crude oil and analysis of the microbial community. International Biodeterioration & Biodegradation, 136, 24-33. https://doi.org/10.1016/j.ibiod.2018.10.007
Xu, X., Liu, W., Tian, S., Wang, W., Qi, Q., Jiang, P., . . . Yu, H. (2018). Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Frontiers in microbiology, 9, 2885. https://doi.org/10.3389/fmicb.2018.02885
Yuan, P., Wang, J., Pan, Y., Shen, B., & Wu, C. (2019). Review of biochar for the management of contaminated soil: Preparation, application and prospect. Science of the Total Environment, 659, 473-490. https://doi.org/10.1016/j.scitotenv.2018.12.400
Zhang, J., Gao, H., & Xue, Q. (2020). Potential applications of microbial enhanced oil recovery to heavy oil. Critical reviews in biotechnology, 40(4), 459-474. https://doi.org/10.1080/07388551.2020.1739618