Macrozoobenthos, Biodiversity, Ecology, Hormozgan
Subject Areas : Animal environmentKeivan Ejlali Khanghah 1 * , Hamed Kioumarsi 2 , ُSaeed Tamadoni 3 , Fatemeh Moazzezi 4
1 - Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas,Iran P.Box: 7916793165َ
2 - بخش تحقیقات علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران
3 - Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas,Iran P.Box: 7916793165
4 - Social and Extension Research Department, Guilan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
Keywords: Macrozoobenthos, Biodiversity, Ecology, Hormozgan,
Abstract :
This study was conducted to investigate the changes in the biodiversity of macrobenthos communities in 2016, 2018, 2017 and 2018. Sampling of bed sediments substrates was carried out in 9 stations from the center to the west of the Bandar Abbas coast by a grab van veen device. In this study, 16 main groups including polychaeta, amphipoda, gastropods and bivalves, sipuncula, copepoda, foraminifera, ostracoda, Tanaidacea, Comacea, Decapoda, Echiora, tapeworms, Euphausiacea, Mysidacea, ophiuridea and a number of subgroups (in terms of number) such as Porifera, Cniderians, fish larvae, Tunicata, Hemicordata and some other invertebrates were identified. Pretaran with 57%, followed by Amphipoda with 18%, gastropods, bivalves and sipunclea, each with 4%, navipods with 3%, Foraminifera, Ostracoda, Tanidaceae, Equira, each with 2% and Comaceae, Decapoda, tapeworms, Ophasiacea, Mysidaceae and Marsans with a relative abundance of 1% formed the structure of benthic communities. Additionally, a total of 347 genera and species belonging to 11 phyla of marine invertebrates (macrobenthos) were identified. Except for in 2018, when the tanaidaceans group dominated, in other instances, polychaeta created the dominant group. Biodiversity indicators studied during the mentioned years showed that in 2016, 2018 and 2018, the studied stations were in stress-free conditions; but in 2018, station 3 was under severe stress and other stations were under moderate stress. However, in 2019, station 3 was under severe stress conditions other stations were under moderate stress. In other words, after 10 years, biodiversity has decreased in the studied stations.
ابراهيمي ، م، 1384 . بررسي هيدرولوژي و هيدروبيولوژي خليج فارس. موسسه تحقيقات شيلات ايران. پژوهشكده اكولوژي خليج فارس و درياي عمان.
نيكوئيان،ع.1386. بررسي تراكم،پراكنش،تنوع وتوليد ثانويه بي مهرگان كفزي(ماكروبنتوزها)در خليج چابهار . رساله دكتراي بيولوژي دريا – دانشگاه آزاد واحد علوم وتحقيقات،195 ص
ولی نسب، ت،. .1394 تعیین میزان توده زنده كفزیان خلیج فارس و دریای عمان به روش مساحت جاروب شده)1390ـ1388(. مؤسسه تحقیقات علوم شیالتی كشور. 356 صفحه. Bellan & Santini,1980. Ecological Indicinors for Assessment of Ecosystem Health, Second edited by Sven E. Jørgensen, Liu Xu, Robert Costanza Brooks, T.M., Mittermeier, R.A., da Fonseca, G.A.B., Gerlach, J., Hoffmann, M., Lamoreux, J.F., Mittermeier, C.G., Pilgrim, J.D., and Rodrigues, A.S.L. 2006. Global
biodiversity conservation priorities. Science, 313 (5783): 58–61. doi:10.1126/science.1127609. Cranston, P.S. 1995. Introduction. In: Armitage, P., P.S. Cranston & L.C.V. Pinder (Eds), the Chironomidae. The biology and ecology of non-biting midges. Chapman & Hall, London: 1-7. Dahanayakar, D.D.G.L. And M.J.S. Wijeyaratne, 2006. Diversity of macrobenthic community in the Negombo estuary, Srilanka, with special reference to environmental conditions. Srilanka, J. Aguat. SCI., 11: 43-61.in rivers: a scientific basis for Polish standard method. Arch. Hydrobiol. Suppl. 141/3-4: 225-239 Gao. F (2011).Ecological Characteristics of Macrobenthic Communities in the Chaohu Lake Basin and Their Relationship with Environmental Factors. Karthikeyan ,M.M, 2009 . Macro Benthic Assemblage and TemporalInteraction at Palk Straits, southeast Coast of India. World journal of biology. 4 (2) : pp. 96-104 Marques, J.C. Salas,F. Pinricio, J.Teixeira, H. Neto, J.M.(2009).Ecological indicinors for coastal and estuarine environmental assessment. Nybakken.J.W. 2005. Marin biology an ecological aapproach,Menlo paru,California eading,Massachusetts, NewYork,Marlow,England,DonMills,Ontario ydney,Mexico City,Madrid,Amsterdam.Forth No .pp.445 Perkins, E.J., 1974. The biology of estuarine and coastal waters, Academic Press, London, pp.: 678. Popchenko, V.I., 1971. Consumption of ligochaeta by fish and invertebrates. J. Ichthyol., 11: 75-80. Ramkumar, R., J.K.P. Edward and M. Jaikumar, 2010. Macrobenthic community structure on tuticorin coastal water, Gulf of Mannar, Southeast coast of India, World J. Fish and Marine Sci., 2 (1): 70-77. Dı ´az S, Cabido M (2001) Vive la diffe ´rence: plant functional diversity matters to ecosystem process. Trends Ecol Evol 16:646–655 Levins R, Lewontin R (1985) The dialectical biologist. Harvard University Press, Cambridge Naeem S (2002) Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83:1517–1552 Odling-Smee FJ, Laland KN, Feldman MW (1996) Niche construction. Am Nat 147:641–648 Levinton JS (1995) Bioturbators as ecosystem engineers: population dynamics and material fluxes. In: Jones CG, Lawton JH (eds) Linking species and ecosystems. Chapman and Hall, New York Pearson TH, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Ann Rev 16:229–311 Collie JS, Hall SJ, Kaiser MJ, Poiner IR (2000) A quantitative analysis of fishing impacts on shelf-sea benthos. J Anim Ecol 69:785–798 Warwick RM, Ashman CM, Brown AR, Clarke KR, Dowell B, Hart B, Lewis RE, Shillabeer N, Somerfield PJ, Tapp JF (2002) Interannual changes in the biodiversity and community structure of the macrobenthos in Tees Bay and the Tees Estuary, UK, associated with local and regional environmental events. Mar Ecol Prog Ser 234:1–13 Arntz W, Gallardo V, Gutie ´rrez D, Isla E, Levin L, Mendo J, Neira C, Rowe GT, Tarazona J, Wolff M (2006) El Nin ˜o and similar perturbation effects on the benthos of the Humboldt, California and Benguela current upwelling ecosystems. Adv Geosci 6:243–265 Pagliosa PR, Rodrigues FA (2006) Assessing the environmentbenthic fauna coupling in protected and urban areas of southern Brazil. Biol Conserv 129:408–417 Lancellotti DA, Stotz WB (2004) Effects of shoreline discharge of iron mine tailings on a marine soft-bottom community in northern Chile. Mar Pollut Bull 48:303–312 Pagliosa PR (2005) Another diet of worms: the applicability of polychaeta feeding guilds as a useful conceptual framework and biological variable. Mar Ecol 26:246–254 Fauchald K, Jumars PA, Johnson BA, Boudreau BB (1979) The diet of worms: a study of polychaete feeding guilds. Oceanogr Mar Biol Ann Rev 17:193–284 Christensen V, Pauly D (1993) Flow characteristics of aquatic systems. In: Christensen V, Pauly D (eds) Trophic models of aquatic ecosystems. ICLARM, conference Proceedings, vol 26, Manila, pp 338–352 Ortiz M, Wolff M (2002a) Trophic models of four benthic communities in Tongoy Bay (Chile): comparative analysis and preliminary assessment of management strategies. J Exp Mar Biol Ecol 268:205–235 Ortiz M, Wolff M (2002b) Dynamical simulation of mass-balance trophic models for benthic communities of north-central Chile: assessment of resilience time under alternative management scenarios. Ecol Model 148:277–291 Taylor HM, Wolff M, Vadas F, Yamashiro C (2008) Trophic and environmental drivers of the Sechura bay ecosystem (Peru ´) over an ENSO cycle. Helgoland Mar Res 62(Suppl 1):15–32 Witman JD, Dayton PK (2001) Rocky subtidal communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates Inc, Sunderland, pp 339–366 Sebens KP (1982) Competition for space: growth rate, reproductive output, escape size. Am Nat 120:189–197 Jackson JBC (1977) Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. Am Nat 111:743–767 Reise K (1985) Tidal flat ecology. An experimental approach to species interactions. Ecological studies. Springer, Berlin Reise K (2002) Sediment mediated species interactions in coastal waters. J Sea Res 48:127–141 Lomovasky B, Mendez A, Brey T, Iribarne O (2006) The effect of the SW Atlantic burrowing crab Chasmagnathus granulatus on the intertidal razor clam Tagelus plebeius. J Exp Mar Biol Ecol 337:19–29 Meysman FJR, Middelburg JJ, Heip CHR (2002) Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol Evol 12:688–695 Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386