Spatial patterns of trees and height story competition over forest developmental stages in the mixed stands of Guilan
Subject Areas : Forests and natural resourcesMaryam Kazempour Larsary 1 * , Kambiz Taheri Abkenar 2 , Reza Akhavan 3 , Hassan pourbabaei 4
1 -
2 -
3 -
4 - دانشگاه گیلان
Keywords: Ripley’s K–function, Forest, Mixed beech forest, Guilan,
Abstract :
Spatial patterns of trees and their interactions specifically reflect mortality, gap creation, resource use, and also determine population dynamics such as seed dispersal, understory development, initial survival and establishment, growth, and competition. In this study, three one-hectare sample plots in the three stages of early development, maturity and decay were selected in an untouched mixed beech forest in order to consider competition of trees from different height stories along developmental stages and all trees with a diameter at breast height (DBH) larger than 7.5 cm by species were measured based on chest diameter, height and determination of cartesian coordinates using distance-azimuth method. Then, these stems data were first divided into three groups (lower, middle and upper stories) depending on their location in the vertical strata. The spatial patterns and spatial associations were analyzed among different tree height classes using univariate and bivariate Ripley’s K-function. Results showed that spatial pattern varied with canopy strata and scales in different development stages. Positively spatial associations of Fagus orientalis at upper and lower stories in initial and optimal staged and also among F. orientalis at upper and middle stories in decay stages influenced by shade-tolerance characteristics, seed dispersal limitation and the role of larger nurse trees as a shelter of small trees. Competition for resources was observed between Fagus orientalis at the middle story and Carpinus betulus at upper story in the all development stages. Recognizing spatial pattern and natural events guided by nature over time are necessary to carry out targeted forestry operations and In proportion to the evolutionary stages of forest stands.
اخوان، ر. (1393). الگوی مکانی درختان در مراحل مختلف تحولی جنگلهای شمال ایران. گزارش نهایی پروژه ملی شماره 5486-90. مؤسسه تحقیقات جنگلها و مراتع کشور، 45 صفحه.
اخوان، رضا؛ مؤمنی مقدم، تکتم؛ اکبرینیا، مسلم و حسینی، سید محسن (1394). بررسی الگوی پراکنش و رقابت درون گونهای ارس (Juniperus polycarpos C. Koch) در مراحل رویشی مختلف با استفاده از آماره O- ring در جنگلهای لاین استان خراسان رضوی. مجلۀ منابع طبیعی ایران، 70(1)، 111-125.
اداره کل منابع طبیعی گیلان، 1387. طرح جنگلداری سری چهار سیستان، حوضه آبخیز 23 (ذیلکی)، 358 صفحه.
امان زاده، بیتالله؛ پور مجیدیان، محمد رضا؛ ثاقب طالبی، خسرو و حجتی، سید محمد (1394). الگوی مکانی و وضعیت رقابت و اجتماعپذیری درختان در تودههای آمیخته ممرز با استفاده از توابع یک و دو متغیره K رایپلی (مطالعه موردی: قطعه شاهد سری سه حوضه ناو اسالم). فصلنامه علمی- پژوهشی تحقیقات جنگل و صنوبر ایران،23(1)، 37-52.
حسنی، مجید و امانی، منوچهر (1389)، بررسی ساختار طبیعی راشستانهای شمال ایران در مرحلۀ تحولی بلوغ در جنگل مرس سی سنگده. فصلنامۀ تحقیقات جنگل و صنوبر ایران، 18(2)، 163-176.
Akhavan, R., Sagheb-Talebi, Kh., Zenner, E.K., & Safavimanesh, F. (2012). Spatial patterns in different forest development stages of an intact old-growth Oriental beech forest in the Caspian region of Iran. European Journal of Forest Research, 131, 1355–1366. https://doi.org/10.1007/s10342-012-0603-z
Boyden, S., Binkley, D., & Shepperd, W. (2005). Spatial and temporal patterns in structure, regeneration, and mortality of an old-growth ponderosa pine forest in the Colorado Front Range. Forest Ecology and Management, 219, 43–55. https://doi.org/10.1016/j.foreco.2005.08.041
Chapin, F.S., Walker, L.R., Fastie, C.L., & Sharman, L.C. (1994). Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecological Monographs, 64, 149–175. https://doi.org/10.2307/2937039
Chen, J., & Bradshaw, G.A. (1999). Forest structure in space: a case study of an old growth spruce-fir forest in Changbaishan Natural Reserve, PR China. Forest Ecology and Management, 120, 219–233. https://doi.org/10.1016/S0378-1127(98)00543-X
Cheng, X., Hairong, H., Fengfeng, K., Yali, S., & Liu, K. (2013). Point pattern analysis of different life stages of Quercus liaotungensis in Lingkong Mountain, Shanxi Province, China. Journal of Plant Interactions, 8, 1-9. https://doi.org/10.1080/17429145.2013.818167
Cipriotti, P.A., & Aguiar, M.R. (2004). Effects of grazing on patch structure in a semi-arid two-phase vegetation mosaic. Journal of Vegetation Science, 16, 57–66. https://doi.org/10.1111/j.1654-1103.2005.tb02338.x
Clark, D.A., & Clark, D.B. (1984). Spacing dynamics of a tropical rain forest tree: evaluation of the Janzen-Connell model. The American Naturalist, 124, 769–788. https://www.jstor.org/stable/2461300
Condit, R., Ashton, P.S., Baker, P., Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N., Hubbell, S.P., Foster, R.B., Itoh, A., LaFrankie, J.V., Lee, H.S., Losos, E., Manokaran, N., Sukumar, R., & Yamakura, T. (2000). Spatial patterns in the distribution of tropical tree species. Science, 288: 1414–1418. https://doi.org/10.1126/science.288.5470.1414
Druckenbrod, D.L., Shugart, H.H., & Davies, I. (2005). Spatial pattern and process in forest stands within the Virginia piedmont. Journal of Vegetation Science, 16(1), 37–48. https://doi.org/10.1111/j.1654-1103.2005.tb02336.x
Fajardo A., John M., Goodburn A., & Jonathan G. (2006). Spatial patterns of regeneration in managed uneven-aged ponderosa pine/Douglas-fir forests of Western Montana, USA. Forest Ecology and Management, 223, 255–266. https://doi.org/10.1016/j.foreco.2005.11.022
Franklin, J.F., ASpies, R., VanPelt, R., BCarey, A., AThornburgh, D., RaeBerg, D., BLindenmayer, D., EHarmon , M., SKeeton, W., CShaw, D., Bible, K., & Chen, Jiquan. (2002). Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management, 155 (1–3), 399–423. https://doi.org/10.1016/S0378-1127(01)00575-8
Harms, K.E., Wright, S.J., Calderon, O., Hernandez, A., & Herre, E.A. (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493–495. https://doi.org/10.1038/35006630
Hao, Z., Zhang, J., Song, B., Ye, J., & Li, B. ( 2007). Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest. Forest ecology and management, 252, 1-11. https://doi.org/10.1016/j.foreco.2007.06.026
Hubbell, S.P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, 378p.
King, D.A., Wright, S.J., & Connell, J.H. (2006). The contribution of interspecific variation in maximum tree height to tropical and temperate diversity. Journal of Tropical Ecology, 22, 11–24. https://doi.org/10.1017/S026646740500277
Lan, G., Getzin, S., Wiegand, T., Hu, Y., Xie, G., Zhu, H., & Cao, M. (2012). Spatial Distribution and Interspecific Associations of Tree Species in a Tropical Seasonal Rain Forest of China, PLOS ONE, 7 (9), 1-10. https://doi.org/10.1371/journal.pone.0046074
Lee, k., Kim, Y., & Choung, Y. (2012). Spatial Pattern and Association of Tree Species in a Mixed Abies holophylla-Broadleaved Deciduous Forest in Odaesan National Park, Journal of Plant Biology, 55, 242-250. https://doi.org/10.1007/s12374-011-0338-2
Manabe, T., Nishimura, N., Miura, M., & Yamamoto, S. (2000). Population structure and spatial patterns for trees in a temperate old-growth evergreen broad-leaved forest in Japan. Plant Ecology, 151, 181–197. https://doi.org/10.1023/A:1026512404110
Myster, R., & Malahy, M. (2012). Testing aggregation hypotheses among Neotropical trees and shrubs: results from a 50-ha plot over 20 years of sampling, Tropical Biologia, 60(3), 1015-1023. https://doi.org/10.15517/rbt.v60i3.1754
Nakashizuka, T., (2001). Species coexistence in temperate, mixed deciduous forests. Trends Ecology &. Evolution, 16(4), 205–210. https://doi.org/10.1016/S0169-5347(01)02117-6
Okuda, T., & N., Kachi. (1995). Spatial pattern of adult trees and seedling survivorshipin Pentaspadon motley in a lowland rain forest in peninsular Malaysia. Journal of Tropical Forest Science, 7, 475-489. https://www.jstor.org/stable/43581841
Salas, C., LeMay, V., Nunez, P., Pacheco, P., & Espinosa, A. (2006). Spatial patterns in an old-growth Nothofagus oblique forest in southcentral Chile. Forest Ecology and Management, 231, 38–46. https://doi.org/10.1016/j.foreco.2006.04.037
Wang, Z., Peng, Sh., Liu, Sh., & Li, Zh. (2003). Spatial pattern of Cryptocarya chinensis life stages in lower subtropical forest, China. Botanical Bulletin of Academia Sinica, 44, 159-166. https://doi.org/10.17221/7/2018-JFS
Wiegand, T., Kissling, W.D., Cipriotti, P.A., & Aguiar, M.R. (2006). Extending point pattern analysis for objects of finite size and irregular shape. Journal of Ecology, 94, 43-56. https://doi.org/10.1111/j.1365-2745.2006.01113.x
Wiegend, T., & Moloney, K.A. (2014). Handbook of Spatial Point-Pattern Analysis in Ecology. Taylor & Francis. 510p. https://doi.org/10.1111/j.1365-2745.2006.01113.x
Yang, H., & Wu, Y. (1988). Species composition, age structure and regeneration strategies in broad-leaved Korean pine mixed forest in Changbai Mountain. Scientia Silvae Sinicae, 24(1), 18–27.
Zhange, Y., Li, J., Chang, Sh., Li, X., & Lu, J. (2012). Spatial distribution pattern of Picea schrenkiana population in the Middle Tianshan Mountains and the relationship with topographic attributes. Journal of bArid Land, 4(4), 457−468, https://doi.org/10.3724/SP.J.1227.2012.00457