• XML

    isc pubmed crossref medra doaj
  • List of Articles


      • Open Access Article

        1 - A rview of the types of superabsorbents used in agriculture and the study of the synthesis of two types of adsorbents using recycled sources to save water resources
        Seyedeh Bahareh Aimi
        Water is one of the problems of today's world and it is necessary to conserve it. Many parts of the world are facing drought conditions. The purpose of this research is to analyze new and different techniques in modern agriculture. In this regard, it has been tried to More
        Water is one of the problems of today's world and it is necessary to conserve it. Many parts of the world are facing drought conditions. The purpose of this research is to analyze new and different techniques in modern agriculture. In this regard, it has been tried to introduce new methods using super absorbents. With the advancement of science and technology, excellent polymer materials have been developed to retain water. In this article, water retention agents based on natural and synthetic polymers have been reviewed in the last 10 years. Finally, the synthesis of two types of natural and synthetic super absorbents using recycled materials is described. Hydroxyethyl cellulose has excellent characteristics of a superabsorbent such as being biodegradable, non-toxic, high water absorption, and is one of the derivatives of cellulose, which is used in water extraction, wastewater treatment, electrolytic membranes, pharmaceuticals, and pesticides. Alternative soil has many applications in agriculture. And its use can be expanded by combining with different polymers. This combination allows the formation of new biomaterials with improved properties and various applications. As a result of preparing a water retention agent with a practical perspective in agriculture, it not only enhances water absorption and water retention in the soil, but also is resistant to salinity and has mechanical strength, re usability and economic value. is. All these features are present in the introduced super absorbents. Manuscript profile
      • Open Access Article

        2 - Spirulina, wastewater dye absorbent microalgae
        Hanieh Mirbolooki fatemeh ghanbari Hooman Heravi
        Dye is the first known pollutant in industrial wastewater, and its small amount is very undesirable in water. Most of the dyes contain complex organic molecules and are harmful to aquatic life and humans due to the presence of metals, aromatics and other compounds in th More
        Dye is the first known pollutant in industrial wastewater, and its small amount is very undesirable in water. Most of the dyes contain complex organic molecules and are harmful to aquatic life and humans due to the presence of metals, aromatics and other compounds in their structure. Removing or reducing the amount of this pollutant entering the environment is essential, and biological absorption is one of these methods. The main purpose of this research is to investigate the removal of blue reactive textile dye by spirulina microalgae. In the process of conducting the research, the effect of variables such as contact time, injected algae dose and wastewater concentration was investigated on the dye removal process and the amount of absorption of the samples was measured by a spectrophotometer and the number of experiments was determined by the design expert software via response surface method (RSM) and the analysis of variance (ANOVA) statistical tool was used to analyze the obtained results. Based on the obtained results, in the optimal conditions of the experiment, the best percentage of dye removal by spirulina microalgae was 100% in contact time of 30 minutes with a dose of 10 ml of injected algae into wastewater with a color concentration of 50 mg/L. Therefore, the use of microalgae, in addition to being an inexpensive and easy-to-operate method for color removal from colored wastewater such as textile wastewater, it will be of interest to researchers as an environmentally friendly method to remove hard degradable pollutants. Manuscript profile