• Home
  • Majid Ghanimati
  • OpenAccess
    • List of Articles Majid Ghanimati

      • Open Access Article

        1 - Photo-transformation of hydrogen sulfide environmental pollutant to hydrogen fuel using a carbon-based magnetic nanocomposite catalyst
        Majid Ghanimati Mohsen Lashgari Mahchehreh Sabeti
        Hydrogen sulfide is a dangerous, corrosive and flammable environmental pollutant that is generated at large scale in sour oil and gas industries. One of the sustainable strategies to remove this environmental pollutant and convert it into hydrogen clean fuel is the use More
        Hydrogen sulfide is a dangerous, corrosive and flammable environmental pollutant that is generated at large scale in sour oil and gas industries. One of the sustainable strategies to remove this environmental pollutant and convert it into hydrogen clean fuel is the use of a renewable energy source (photon) and synthesis of semiconducting nanoenergy materials. To this end, in the present project, a nanostructured magnetic semiconducting MgFe2O4 compound was synthesized and applied for the production of hydrogen fuel through photocatalytic splitting of an alkaline H2S solution. The empirical evidence revealed that the synthesized material has an appropriate potency to reduce proton and produce hydrogen. Furthermore, by the synthesis of CNT/MgFe2O4 magnetic nanocomposite, the boosting effect of carbon nanotube (CNT) on the activity of the aforementioned photocatalyst was examined. A significant promotion in hydrogen production was observed in the presence of CNT and justified in terms of increasing the photocatalyst surface area, retarding the electron-hole recombination process and enhancing the photon absorption. The rate of hydrogen evolution was 1284 µmole/h per 0.2 g photocatalyst, indicating that the synthesized nanocomposite material has a high ability to remove the pollutant and produce hydrogen fuel. Manuscript profile